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KILLED RANDOM PROCESSES AND HEAT KERNELS
J. Villarroel*

Let V(z) > 0 be a given function tending to a constant at infinity. It is well known that the density
of the Brownian motion B; killed at the infinitesimal rate V' is a Green’s function for the heat operator
with such a potential. With an appropriate generalization, its Laplace transform also gives the density of
jo (Bs)ds. We construct such a Green’s function via spectral analysis of the classical one-dimensional

stationary Schrédinger operator.
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1. Brownian motion and killing

In this introductory section, we recall several well-known aspects of the classical theory of the Brownian
motion (BM) B; (see [1] for more details). We are interested in certain aspects of the theory where the
Green’s function G(t,z |t',2’) = G(t — t/,x | 2’) for the heat operator with a negative “time-independent”
potential, i.e.,

LG = (=0t 4 0pe — V(2))G(t, x|, 2") = —=6(t — t')d(x — '), (1)

plays a crucial role. The construction of this propagator and its relation to the spectral analysis of the
classical one-dimensional stationary Schrodinger operator is considered in Sec. 2. Assuming that V(x)
tends to a constant as |x| — oo, we show how to implement this construction. In Sec. 3, we give a
concrete construction of G(¢,z |t',2") when V (x) corresponds to the simplest reflectionless potential of the
Schrodinger operator.

We recall that BM is a stochastic process B; that models a random walk, i.e., it describes the erratic
motion of a particle that can move to the right or left with equal probability at each instant. Here,
B; = Bi(w) represents the position at time ¢ of the Brownian traveler. If motion starts at z’: By = «’
and is assumed to be isotropic and homogeneous in space and time, then B; has the density given by the

classical heat kernel

1

P(B; € [z,z +dx)) = i

Equation (1) arises as follows. In addition, we suppose that a random killing mechanism is introduced
such that B; “disappears” at a random time 7 or, more precisely, attains a (new) death state 9. We
call the rebultlng process By = 06(t — 1) + Byf(r — t) the BM with killing B; € R U {8} (or KBM) Let
©(t) = P(B, # 9) be the probability that B; survives up to time . We suppose that given that B, = z € R
(Et took a value x and hence has not yet been killed), the probability of being killed at any time ¢+ h > ¢
is o(h); concretely,

P(Byin # 0| By = ) = 1= V(2)h + o(h). (2)
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Of course, P(§t+h # 0| B, = 9) = 0. Therefore, V(z) > 0 is the infinitesimal rate of killing of the Brownian
particle. The former rules define the killing mechanism and by the total probability theorem imply that

P(B, +0) = exp{— /Ot V(Bs)ds}. 3)

Indeed, we have

P(Bip, # 0) = P(Beyn # 0| By # 0)P(By # 0) + P(Byyn # 0| By = 9)P(B; = 9).
Hence,
p(t+h) =) (1 = V(B)h) +o(h),

and letting h — 0, we obtain the differential equation with the initial condition

W VB, e0)=1,

and path integral (3) is recovered.
Given that By = 2/, KBM B, is then determined by giving the density

P(B; € [z, +dz)) = P(B; € [z, + dx),7 > t) = f(t,x| ') dx (4)

and the distribution of the death time

P(Tgt):1—P(§t7é8):1—/Rf(t,x|x’)dac. (5)

This density is recovered by the classical Feynman—Kac formula of probability and quantum mechanics
establishing that the kernel f(¢,z|z’) of path integral (3) is a solution of (1): Lf(z,t|a’) = é(¢)0(z — ).
In particular, if V(z) = b2, then we have
e—b2t—(r—r')2/(4t)
Vvt
P(By is killed in finite time) = tlim P(r<t)=1,

fla,t|a)) = 0(t), Plr<t)=1-e"",

and the Brownian traveler is killed in a finite time with certainty.

These ideas find an interesting application in the problem of determining the density w(t, z | 2')dz =
P(Z; € dz) of the integrated process Z; = fg V(Bs) ds given the initial values By = 2’ and Z = 0. For this,
given V(z), we consider the family V' (z;p) = pV () of killing functions indexed by the positive parameter
p > 0. Let B” be the corresponding KBM and f(f,2;p|a’) be its density: P(Ef) € [z,2+dx)) =
ft,z;p|x’) dx. The total probability theorem gives

P(BY £0) = exp{—p /O tV(Bs)ds} - /O T e Pen(t, 2 | o) d. (6)

It follows from (5) and (6) that

cprﬂz/fwaMfo=A e Pon(t, | 2! dx.
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Inverting the Laplace transform, we have

n(t, 2| 2) /Ctp|x eP* dp, (7)

where T' is the classical Bromwich contour running along a line parallel to the imaginary axis that leaves
all singularities of ((¢;p|z’) in the complex p plane to the left.

But complete information about the correlated pair (By, Z;) requires its joint density II(¢, z, z |z’)
defined by II(t,z, z | ') dvdz = P(By € [z,x 4+ dz), Z; € [2,2+ dz)). Similarly as above, we can prove that

(t,z, 2| 2") 2m/ftxp|x)epzdp (8)
Again appealing to the Feynman—Kac formula, we find that f(¢,2;p|2’) solves (1) with the potential
V(z;p) = pV(z):
(=0 + 0pz — PV (2)) f(t,z5p | 2") = —=6(t — t')(x — ).

The problem of determining the statistical distribution of fot V(Bs) ds thus reduces to obtaining the density
of the KBM with the potential pV (x). As we now see, this is generally a difficult problem interwoven with
classical spectral analysis for the one-dimensional stationary Schrédinger operator.

2. Determining the density of a killed BM and heat propagators

We now show how to determine the density of the KBM for a certain class of potentials. We assume
that the function V() satisfies V() > 0 and that V(x) = b> — u(z) where b is a certain constant and u(x)
satisfies

lim u(z) =0, /(1 + J2]) [u(z)] dz < oo. )

|z|— 00

We find that the Green’s function is constructed in terms of eigenfunctions of the one-dimensional Schro-
dinger operator A(z,0,) = Ops+k?+u(z), where k = kr+ik; € C is a complex parameter (the identification
b = ks is used later). We follow [2], where these ideas are developed in the context of the classical
Kadomtsev—Petviashvili equation

(Ut + Ugaz + O6UUL )z + Buyy =0

(we note that some preliminary work in this regard also appeared in [3]). We first recall several basic facts
about the spectral theory of the former operator (see [4], [5]) for more details).
Let ¢4 (x, k) and ¢4 (z, k) be eigenfunctions of the stationary Schrodinger operator,

Az, 03)p+(x, k) = Az, 0z)+ (z, k) =0, (10)

satisfying the conditions

$i(a, k) =eT x— —o0,  Yi(zk) =T, @ — oo (11)

If u(x) satisfies condition (9), then the former functions exist and are analytic functions of k = kg + ik; on
C+ (the upper and lower k half-planes) with limits at the boundary {k; = 0} and related by

¢+($a k) = a(k)¢— (33, k) + b(k)¢+(33a k)v ke Rv (12)
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for certain functions a(k) and b(k) (see [5]), where a(k) is an analytic function of k on C4 having a finite
set {k; = irj,k; € RT};—1 . n of (simple) zeroes. It turns out that ¢ (x, k) and ¢ (z, k) are proportional
at these points: ¢4 (z, k;) = B4 (x, k;), where 8; is some complex constant. This along with (11) implies
that ¢4 (x,k;) and ¢4 (x, k;) decay exponentially. The reflection coefficient p(k) = b/a(k), the “norming”
constants 3;, and the zeroes {k; = ikj, rk; € Rt : a(k;) = O}j:17...7N are the continuous and discrete
scattering data of the one-dimensional Schrédinger operator, and ¢;(z) = ¢4 (z, k;) are the eigenfunctions
of the discrete spectrum.
Let the continuous and discrete parts of the Green’s function be

o(t L 2,

Ge(t,z|a') = AR e A2k (g ! 1 4 ikyp) dl, (13)
27'(' L—oo L

Ga(t,w|a’) =i Y el TFHS)g, (2,2 )0(~1), (14)
Kj>kr

where we define g(z, ', k) on C; as

¢+ (SE, k)¢+ (x/’ k)

&' k) = , kr>0. 15
9.’ k) o : (15)
Finally, the Green’s function is taken to be

Gt,z|z') = G.(t,x|2") + Galt,z|2"). (16)

The following result gives the main properties of these objects.

Proposition 1. The function g(x, ', k) exists and is a meromorphic function on the upper half-plane
C4 with poles at the zeroes k; of a(k) and the residues

B,
Res g(x, @', k)k=k, = g;(x,2") = Cjup;(x)v; ('), C; ="
a’(k;)
As |k| — oo, g(z,2', k) has the asymptotic expansion
/ —ik(z—a") ~ / ~ / _ = mn(x,x’)
g(x,x,k)ze g(:mx,k), g(xaxak)::l—'_ZTa (17)

where the coefficients are uniformly bounded.
We are now prepared for the fundamental result.

Theorem 1. The function G(t,z|z') is a Green’s function for the heat operator L with the potential
V(z) = k? — u(z):

LG = (=0 + Ope — k2 +u(2)) G = —5(t)5(x — o). (18)

Proof. By direct derivation, we find that

o(t L 2 9
LG, = % L]im et +2ikil) (02 + (14 ik1)® +u(z)| g(z, 2,1+ ikr) dl —
™ - J_ T,
O] / e*t(l2+2ik1l)g(x,x’, I+ ikr)dl.
2T R
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In view of (10), the first term vanishes identically. Therefore,

o) lim ' gz, 1 +ikp)dl = —6(t) (5(33—3:’)—!—2' Z gj(x,x’)).

2T L—oo _r
rj>kr|

LG, =

This last equality is a deep result, which we do not prove here, regarding the completeness of the eigen-
functions of the Schrodinger operator. moreover, we trivially have

LGa=1i5(t) > gj(z.a).

wj>|kr|

The analyticity properties of g(x,2’,1) can be used to derive another interesting, more useful represen-
tation of the Green’s function. We obtain the following result.

Result 1. The Green’s function for the operator L in (18) can also be written as

Gt,z|z') =1 Z e('“?_k?)tgj(x, z)(—t) +

ki >kr
I —t(124+k?) / ; (kKD !
+ o e Dg(x,z',1)dl —i Z eV i T g (x, 2" [ 0(2). (19)

k]>){j

Proof. We consider Cauchy integral (13). The corresponding integral in the Green’s function can be
transformed such that the integration is over the real axis. For this, we consider a rectangular integration
contour I'y, taken in the clockwise sense with vertices at the points vy, v, v3,v4 € C4 on the complex upper
half-plane where

v = —L, vg = L, vs = L + iky, vy = —L + iky,
The contribution of the integrals over the vertical sides is proportional to

]. kI 7t((L+' 2 k2 —i(L4+1i A
il e is)" k1) g mi(Ltis) (@ —a") gq
2 0
which tends to zero as L — co. We recall that g(k) is meromorphic on C,. Hence, Cauchy’s theorem gives

L

L
Llim e_t(l2+k?)g(a:, 2, 0)dl — Llim e_t(12+2“”l)g(33, ' 1+ ikr)dl =
—oo J_p, —oo J_g,

. _ 2 2 . 2_ 1.2
= Lh—>néo e tE D (2, 2! 2) dz = 2mi Z e kD g (2.
'z kr>kj

This amounts to the claim.

We note that the Green’s function has the interesting property that it vanishes exponentially fast as
either |¢| or |z| tends to oo; in particular, G¢(¢, x| 2’) has an asymptotic expansion with the leading term
given by

— g(x,x’, —Zl()) . / 22V
Gelt,w|a') m e”WIHITEm 000 i Y — Y )il a)e T 0(0) (20)
At ki<|lo|  K;j<kr

as |t| — oo with (x — 2')/(2t) = [ fixed.
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3. The Green’s function for reflectionless potentials

We next consider the case of reflectionless potentials characterized by p(k) = 0. The simplest of such
potentials is the one-bound-state Bargmann potential (or soliton potential) given by

2k2

cosh? k(x — )’

u(x) =

where k and zy are constants. It is well known that the spectral data for this potential consist of just
one zero (eigenvalue) k1 = ik and the norming constant C; = 2ike?*®0. The eigenfunction of the discrete
spectrum is

—RT
e 0

Y1(z) =i (x, k1) =

cosh k(z — xg)

The wave functions are

(s —k) = (k) = LEER) e <1 L G m)).

k— ik

We hence have

en(z’—r)

( ’ k) _ ik(z'—x) 14 ( /) _ e (a'—2) (21)
glx,x, =€ gi1{xr,T k—l/i k—f—l/ﬁ 9

and the Green’s function involves the evaluation of integral (19). We note that

00 —tl’+il(z' —z)) 2 ,  —x
dl = 2mie" —ﬂ%( —f<:\/2—t), 22
/_OO [ —1K e K2t 22
where we define
z 2 dZ
P(x) = e P2
@=[ er
We find that
o—k3t—(z—a')?/(4t) oper°—k1)t
t 4 = 9 t
G(t,x|z") Vart () + cosh k(x — xg) cosh k(a’ — xp) x
r_ !
[ ) o]

where we introduce

) 1, kr <k,
kr<w} —
{hr<n} 0, kr> k.

It turns out that this construction generalizes to the case of reflectionless potentials. We suppose
that u(x) is an N-soliton potential, i.e., that p(k) = 0 and a(k) has N zeroes with norming constants Cj,
j=1,...,N. Then

efkitf(wfw/)2/(4t)

Gt x| a') = ———0(t) +¢;gj<x,x’>e<~?k?>t x
X K@(%—nj\/z—t) —@(x/—\/;_::+nj\/2—t)>0(t)+1{k,<,ﬂ}} (24)
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If 2% + 22 + t? — oo with (2/ — x)/t — lo, then

/

' —x
— kY2t — +o00 if £(lg— k) >0,
NeT (lo — &)
and hence
-z -z
@(W — Ii\/ﬂ) — @(ﬁ + H\/E) z2+r/2:5>2—>00 _1{—){<l0<.‘€}7
where

—Lr<tocny = —0(k = 10)0(lo + £) = Lin<ioly =1 = Ynziioly = Vn<hr} = Hrzki}s

in exact agreement with formula (20).

The density f(t,z|2’) of the KBM with the killing rate V(z) = b? — u(x) > 0 is recovered from the
above ideas. We recall that f(¢,x|a’) is interpreted as the density of the position of B; with the killing
time greater than ¢. Further, it solves (18) with the identification b = k;. We determine it in the case of
the one-soliton potential

2k2

V(e) =0 —u(@),  u(z)= R

(25)

where b and k are constants and b > 2x? (by translational invariance, a further constant could be added).
We have the following result.

Result 2. Let a Brownian motion start at x’, with the killing rate given by (25). Then the probability
that it has not yet been killed at the time t > 0 and is located in the interval [z,x + dz) is P(B; €
[z, 2 +dx), 7 > t) = f(t,z|z) dw, where

ft,z]al) =

e—b2t—(r—r')2/(4t) 2/€e(ﬂ2—b2)t < (CE/ —r

NoT —m@) —@(f;txﬂn/%)). (26)

V2t

4t cosh kx cosh Kk’

The distribution of the death time is given by

Qpelr?—b)t 2 —x 2 —x dx
Plr<t)=1- —br 2R / 0] V2t | — @ — KV 2t .
(r=1) ¢ s V2t T NoT cosh kx

The probability that B, is eventually killed is

P(r < x) = tlim P(r<t)=1.

Proof. The result follows from (24). We note that the requirement V(x) > 0 yields the constraint
on the parameters b> > 2x? and several terms in (24) hence drop out yielding a causal Green’s function

flt,z|2).
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