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KILLED RANDOM PROCESSES AND HEAT KERNELS

J. Villarroel∗

Let V (x) ≥ 0 be a given function tending to a constant at infinity. It is well known that the density

of the Brownian motion Bt killed at the infinitesimal rate V is a Green’s function for the heat operator

with such a potential. With an appropriate generalization, its Laplace transform also gives the density of
∫ t
0 V (Bs) ds. We construct such a Green’s function via spectral analysis of the classical one-dimensional

stationary Schrödinger operator.
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1. Brownian motion and killing

In this introductory section, we recall several well-known aspects of the classical theory of the Brownian
motion (BM) Bt (see [1] for more details). We are interested in certain aspects of the theory where the
Green’s function G(t, x | t′, x′) ≡ G(t − t′, x |x′) for the heat operator with a negative “time-independent”
potential, i.e.,

LG ≡ (−∂t + ∂xx − V (x)
)
G(t, x | t′, x′) = −δ(t− t′)δ(x − x′), (1)

plays a crucial role. The construction of this propagator and its relation to the spectral analysis of the
classical one-dimensional stationary Schrödinger operator is considered in Sec. 2. Assuming that V (x)
tends to a constant as |x| → ∞, we show how to implement this construction. In Sec. 3, we give a
concrete construction of G(t, x | t′, x′) when V (x) corresponds to the simplest reflectionless potential of the
Schrödinger operator.

We recall that BM is a stochastic process Bt that models a random walk, i.e., it describes the erratic
motion of a particle that can move to the right or left with equal probability at each instant. Here,
Bt ≡ Bt(ω) represents the position at time t of the Brownian traveler. If motion starts at x′: B0 = x′

and is assumed to be isotropic and homogeneous in space and time, then Bt has the density given by the
classical heat kernel

P
(
Bt ∈ [x, x+ dx)

)
=

1√
4πt

exp
[

− (x− x′)2

4t

]

dx.

Equation (1) arises as follows. In addition, we suppose that a random killing mechanism is introduced
such that Bt “disappears” at a random time τ or, more precisely, attains a (new) death state ∂. We
call the resulting process B̂t = ∂θ(t − τ) + Btθ(τ − t) the BM with killing B̂t ∈ R ∪ {∂} (or KBM). Let
ϕ(t) ≡ P (B̂t �= ∂) be the probability that B̂t survives up to time t. We suppose that given that B̂t = x ∈ R

(B̂t took a value x and hence has not yet been killed), the probability of being killed at any time t+ h > t

is o(h); concretely,

P (B̂t+h �= ∂ | B̂t = x) = 1 − V (x)h+ o(h). (2)
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Of course, P (B̂t+h �= ∂ |Bt = ∂) = 0. Therefore, V (x) ≥ 0 is the infinitesimal rate of killing of the Brownian
particle. The former rules define the killing mechanism and by the total probability theorem imply that

P (B̂t �= ∂) = exp
{

−
∫ t

0

V (Bs) ds
}

. (3)

Indeed, we have

P (B̂t+h �= ∂) = P (B̂t+h �= ∂ | B̂t �= ∂)P (B̂t �= ∂) + P (B̂t+h �= ∂ | B̂t = ∂)P (B̂t = ∂).

Hence,

ϕ(t+ h) = ϕ(t)
(
1 − V (Bt)h

)
+ o(h),

and letting h→ 0, we obtain the differential equation with the initial condition

dϕ

dt
= −ϕ(t)V (Bt), ϕ(0) = 1,

and path integral (3) is recovered.
Given that B0 = x′, KBM B̂t is then determined by giving the density

P
(
B̂t ∈ [x, x + dx)

)
= P

(
Bt ∈ [x, x+ dx), τ > t

) ≡ f(t, x |x′) dx (4)

and the distribution of the death time

P (τ ≤ t) = 1 − P (B̂t �= ∂) = 1 −
∫

R

f(t, x |x′) dx. (5)

This density is recovered by the classical Feynman–Kac formula of probability and quantum mechanics
establishing that the kernel f(t, x |x′) of path integral (3) is a solution of (1): Lf(x, t |x′) = δ(t)δ(x − x′).
In particular, if V (x) = b2, then we have

f(x, t |x′) =
e−b2t−(x−x′)2/(4t)

√
4πt

θ(t), P (τ ≤ t) = 1 − e−b2t,

P (Bt is killed in finite time) = lim
t→∞P (τ ≤ t) = 1,

and the Brownian traveler is killed in a finite time with certainty.
These ideas find an interesting application in the problem of determining the density π(t, z |x′)dz ≡

P (Zt ∈ dz) of the integrated process Zt ≡
∫ t

0 V (Bs) ds given the initial values B0 = x′ and Z0 = 0. For this,
given V (x), we consider the family Ṽ (x; p) ≡ pV (x) of killing functions indexed by the positive parameter
p ≥ 0. Let B̂p)

t be the corresponding KBM and f(t, x; p |x′) be its density: P
(
B̂

p)
t ∈ [x, x + dx)

) ≡
f(t, x; p |x′) dx. The total probability theorem gives

P (B̂p)
t �= ∂) = exp

{

−p
∫ t

0

V (Bs) ds
}

=
∫ ∞

0

e−pzπ(t, z |x′) dz. (6)

It follows from (5) and (6) that

ζ(t; p |x′) =
∫
f(t, x; p |x′) dx =

∫ ∞

0

e−pzπ(t, z |x′) dz.
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Inverting the Laplace transform, we have

π(t, z |x′) =
1

2πi

∫

Γ

ζ(t; p |x′)epz dp, (7)

where Γ is the classical Bromwich contour running along a line parallel to the imaginary axis that leaves
all singularities of ζ(t; p |x′) in the complex p plane to the left.

But complete information about the correlated pair (Bt, Zt) requires its joint density Π(t, x, z |x′)
defined by Π(t, x, z |x′) dx dz ≡ P

(
Bt ∈ [x, x+ dx), Zt ∈ [z, z+ dz)

)
. Similarly as above, we can prove that

Π(t, x, z |x′) =
1

2πi

∫

Γ

f(t, x; p |x′)epz dp. (8)

Again appealing to the Feynman–Kac formula, we find that f(t, x; p |x′) solves (1) with the potential
Ṽ (x; p) ≡ pV (x):

(−∂t + ∂xx − pV (x)
)
f(t, x; p |x′) = −δ(t− t′)δ(x − x′).

The problem of determining the statistical distribution of
∫ t

0
V (Bs) ds thus reduces to obtaining the density

of the KBM with the potential pV (x). As we now see, this is generally a difficult problem interwoven with
classical spectral analysis for the one-dimensional stationary Schrödinger operator.

2. Determining the density of a killed BM and heat propagators

We now show how to determine the density of the KBM for a certain class of potentials. We assume
that the function V (x) satisfies V (x) ≥ 0 and that V (x) ≡ b2 − u(x) where b is a certain constant and u(x)
satisfies

lim
|x|→∞

u(x) = 0,
∫ (

1 + |x|)∣∣u(x)
∣
∣ dx <∞. (9)

We find that the Green’s function is constructed in terms of eigenfunctions of the one-dimensional Schrö-
dinger operatorA(x, ∂x) ≡ ∂xx+k2+u(x), where k ≡ kR+ikI ∈ C is a complex parameter (the identification
b = kI is used later). We follow [2], where these ideas are developed in the context of the classical
Kadomtsev–Petviashvili equation

(ut + uxxx + 6uux)x + 3uyy = 0

(we note that some preliminary work in this regard also appeared in [3]). We first recall several basic facts
about the spectral theory of the former operator (see [4], [5]) for more details).

Let φ±(x, k) and ψ±(x, k) be eigenfunctions of the stationary Schrödinger operator,

A(x, ∂x)φ±(x, k) = A(x, ∂x)ψ±(x, k) = 0, (10)

satisfying the conditions

φ±(x, k) = e∓ikx, x→ −∞, ψ±(x, k) = e∓ikx, x→ ∞. (11)

If u(x) satisfies condition (9), then the former functions exist and are analytic functions of k ≡ kR + ikI on
C± (the upper and lower k half-planes) with limits at the boundary {kI = 0} and related by

φ+(x, k) = a(k)ψ−(x, k) + b(k)ψ+(x, k), k ∈ R, (12)
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for certain functions a(k) and b(k) (see [5]), where a(k) is an analytic function of k on C+ having a finite
set {kj ≡ iκj , κj ∈ R+}j=1,...,N of (simple) zeroes. It turns out that φ+(x, k) and ψ+(x, k) are proportional
at these points: φ+(x, kj) = βjψ+(x, kj), where βj is some complex constant. This along with (11) implies
that φ+(x, kj) and ψ+(x, kj) decay exponentially. The reflection coefficient ρ(k) ≡ b/a(k), the “norming”
constants βj , and the zeroes

{
kj ≡ iκj, κj ∈ R+ : a(kj) = 0

}
j=1,...,N

are the continuous and discrete
scattering data of the one-dimensional Schrödinger operator, and ψj(x) ≡ ψ+(x, kj) are the eigenfunctions
of the discrete spectrum.

Let the continuous and discrete parts of the Green’s function be

Gc(t, x |x′) =
θ(t)
2π

lim
L→∞

∫ L

−L

e−t(l2+2ikI l)g(x, x′, l + ikI) dl, (13)

Gd(t, x |x′) = i
∑

κj≥kI

e(−k2
I+κ2

j )tgj(x, x′)θ(−t), (14)

where we define g(x, x′, k) on C+ as

g(x, x′, k) ≡ φ+(x, k)ψ+(x′, k)
a+(k)

, kI > 0. (15)

Finally, the Green’s function is taken to be

G(t, x |x′) = Gc(t, x |x′) +Gd(t, x |x′). (16)

The following result gives the main properties of these objects.

Proposition 1. The function g(x, x′, k) exists and is a meromorphic function on the upper half-plane

C+ with poles at the zeroes kj of a(k) and the residues

Res g(x, x′, k)k=kj = gj(x, x′) ≡ Cjψj(x)ψj(x′), Cj ≡ βj

a′(kj)
.

As |k| → ∞, g(x, x′, k) has the asymptotic expansion

g(x, x′, k) = e−ik(x−x′)g̃(x, x′, k), g̃(x, x′, k) ≡ 1 +
∞∑

n=1

mn(x, x′)
kn

, (17)

where the coefficients are uniformly bounded.

We are now prepared for the fundamental result.

Theorem 1. The function G(t, x |x′) is a Green’s function for the heat operator L with the potential

V (x) = k2
I − u(x):

LG ≡ (−∂t + ∂xx − k2
I + u(x)

)
G = −δ(t)δ(x− x′). (18)

Proof. By direct derivation, we find that

LGc =
θ(t)
2π

lim
L→∞

∫ L

−L

e−t(l2+2ikI l)
[
∂xx + (l + ikI)2 + u(x)

]
g(x, x′, l+ ikI) dl −

− δ(t)
2π

∫

R

e−t(l2+2ikI l)g(x, x′, l + ikI) dl.
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In view of (10), the first term vanishes identically. Therefore,

LGc = −δ(t)
2π

lim
L→∞

∫ L

−L

g(x, x′, l + ikI) dl = −δ(t)
(

δ(x− x′) + i
∑

κj≥|kI |
gj(x, x′)

)

.

This last equality is a deep result, which we do not prove here, regarding the completeness of the eigen-
functions of the Schrödinger operator. moreover, we trivially have

LGd = iδ(t)
∑

κj≥|kI |
gj(x, x′).

The analyticity properties of g(x, x′, l) can be used to derive another interesting, more useful represen-
tation of the Green’s function. We obtain the following result.

Result 1. The Green’s function for the operator L in (18) can also be written as

G(t, x |x′) = i
∑

κj≥kI

e(κ
2
j−k2

I )tgj(x, x′)θ(−t) +

+
[

1
2π

∫ ∞

−∞
e−t(l2+k2

I )g(x, x′, l) dl− i
∑

kI>κj

e(κ
2
j−k2

I )tgj(x, x′)
]

θ(t). (19)

Proof. We consider Cauchy integral (13). The corresponding integral in the Green’s function can be
transformed such that the integration is over the real axis. For this, we consider a rectangular integration
contour ΓL taken in the clockwise sense with vertices at the points v1, v2, v3, v4 ∈ C+ on the complex upper
half-plane where

v1 = −L, v2 = L, v3 = L+ ikI , v4 = −L+ ikI ,

The contribution of the integrals over the vertical sides is proportional to

1
2π

∫ kI

0

e−t((L+is)2+k2
I )e−i(L+is)(x−x′) ds,

which tends to zero as L→ ∞. We recall that g(k) is meromorphic on C+. Hence, Cauchy’s theorem gives

lim
L→∞

∫ L

−L

e−t(l2+k2
I )g(x, x′, l) dl− lim

L→∞

∫ L

−L

e−t(l2+2ikI l)g(x, x′, l + ikI) dl =

= lim
L→∞

∫

ΓL

e−t(z2+k2
I )g(x, x′, z) dz = 2πi

∑

kI>κj

e(κ
2
j−k2

I )tgj(x, x′).

This amounts to the claim.

We note that the Green’s function has the interesting property that it vanishes exponentially fast as
either |t| or |x| tends to ∞; in particular, Gc(t, x |x′) has an asymptotic expansion with the leading term
given by

Gc(t, x |x′) ≈ e−(k2
I+l20)t g(x, x

′,−il0)√
4πt

θ(t) + i

( ∑

κj≤|l0|
−

∑

κj<kI

)

gj(x, x′)e(κ
2
j−k2

I )tθ(t) (20)

as |t| → ∞ with (x− x′)/(2t) ≡ l0 fixed.

1242



3. The Green’s function for reflectionless potentials

We next consider the case of reflectionless potentials characterized by ρ(k) = 0. The simplest of such
potentials is the one-bound-state Bargmann potential (or soliton potential) given by

u(x) =
2κ2

cosh2 κ(x− x0)
,

where κ and x0 are constants. It is well known that the spectral data for this potential consist of just
one zero (eigenvalue) k1 = iκ and the norming constant C1 ≡ 2iκe2κx0. The eigenfunction of the discrete
spectrum is

ψ1(x) = ψ+(x, k1) =
e−κx0

coshκ(x− x0)
.

The wave functions are

ψ+(x,−k) = ψ−(x, k) =
φ+(x, k)
a(k)

= e−ikx

(

1 +
C1e

−κx

k − iκ
ψ1(x)

)

.

We hence have

g(x, x′, k) = eik(x′−x)

(

1 + g1(x, x′)
(
eκ(x′−x)

k − iκ
− e−κ(x′−x)

k + iκ

))

, (21)

and the Green’s function involves the evaluation of integral (19). We note that

∫ ∞

−∞

e−tl2+il(x′−x))

l − iκ
dl = 2πieκ2t−κ(x′−x)Φ

(
x′ − x

κ
√

2t
− κ

√
2t

)

, (22)

where we define

Φ(x) ≡
∫ x

−∞
e−z2/2 dz√

2π
.

We find that

G(t, x |x′) =
e−k2

It−(x−x′)2/(4t)

√
4πt

θ(t) +
2κe(κ

2−k2
I )t

coshκ(x− x0) coshκ(x′ − x0)
×

×
[(

Φ
(
x′ − x√

2t
+ κ

√
2t

)

− Φ
(
x′ − x√

t
− κ

√
2t

))

θ(t) + 1{kI≤κ}

]

, (23)

where we introduce

1{kI≤κ} =

{
1, kI ≤ κ,

0, kI > κ.

It turns out that this construction generalizes to the case of reflectionless potentials. We suppose
that u(x) is an N -soliton potential, i.e., that ρ(k) = 0 and a(k) has N zeroes with norming constants Cj ,
j = 1, . . . , N . Then

G(t, x |x′) =
e−k2

I t−(x−x′)2/(4t)

√
4πt

θ(t) + i
∑

j

gj(x, x′)e(κ
2
j−k2

I )t ×

×
[(

Φ
(
x′ − x√

2t
− κj

√
2t

)

− Φ
(
x′ − x√

2t
+ κj

√
2t

))

θ(t) + 1{kI≤κj}

]

. (24)
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If x2 + x′2 + t2 → ∞ with (x′ − x)/t→ l0, then

x′ − x√
2t

− κ
√

2t → ±∞ if ± (l0 − κ) > 0,

and hence

Φ
(
x′ − x√

2t
− κ

√
2t

)

− Φ
(
x′ − x√

2t
+ κ

√
2t

)

−→
x2+x′2+t2→∞

−1{−κ<l0<κ},

where

−1{−κ<l0<κ} ≡ −θ(κ− l0)θ(l0 + κ) = 1{κ≤|l0|} − 1 = 1{κ≤|l0|} − 1{κ<kI} − 1{κ≥kI},

in exact agreement with formula (20).
The density f(t, x |x′) of the KBM with the killing rate V (x) = b2 − u(x) ≥ 0 is recovered from the

above ideas. We recall that f(t, x |x′) is interpreted as the density of the position of Bt with the killing
time greater than t. Further, it solves (18) with the identification b = kI . We determine it in the case of
the one-soliton potential

V (x) = b2 − u(x), u(x) =
2κ2

cosh2 κx
, (25)

where b and κ are constants and b2 ≥ 2κ2 (by translational invariance, a further constant could be added).
We have the following result.

Result 2. Let a Brownian motion start at x′, with the killing rate given by (25). Then the probability

that it has not yet been killed at the time t > 0 and is located in the interval [x, x + dx) is P
(
Bt ∈

[x, x+ dx), τ > t
)

= f(t, x |x′) dx, where

f(t, x |x′) =
e−b2t−(x−x′)2/(4t)

√
4πt

+
2κe(κ

2−b2)t

coshκx coshκx′

(

Φ
(
x′ − x√

2t
− κ

√
2t

)

− Φ
(
x′ − x√

2t
+ κ

√
2t

))

. (26)

The distribution of the death time is given by

P (τ ≤ t) = 1 − e−b2t +
2κe(κ

2−b2)t

coshκx′

∫ (

Φ
(
x′ − x√

2t
+ κ

√
2t

)

− Φ
(
x′ − x√

2t
− κ

√
2t

))
dx

coshκx
.

The probability that Bt is eventually killed is

P (τ <∞) = lim
t→∞P (τ ≤ t) = 1.

Proof. The result follows from (24). We note that the requirement V (x) ≥ 0 yields the constraint
on the parameters b2 ≥ 2κ2 and several terms in (24) hence drop out yielding a causal Green’s function
f(t, x |x′).
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