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We use high-precision, large system-size wave function data to analyse the scaling properties of the mul-
tifractal spectra around the disorder-induced three-dimensional Anderson transition in order to extract the
critical exponents of the transition. Using a previously suggested scaling law, we find that the critical expo-
nent ν is significantly larger than suggested by previous results. We speculate that this discrepancy is due to
the use of an oversimplified scaling relation.
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1 Introduction

The metal to insulator transition (MIT) in the three-dimensional (3D) Anderson model of localization is one
of the most interesting quantum critical phenomena [1,2]. The transition is characterized by the divergence
of the correlation length ξ near the critical point. Here we consider non-interacting electrons subjected to
a random potential (e.g. uniform distribution of disorder [−W/2,W/2]), the correlation length near the
mobility edge Ec diverges as ξ(Ec,W ) ∝ |W − Wc|−ν with Wc as the critical value of the disorder.
The critical exponent ν characterizes the critical divergence and is the same for all models in a given
universality class, here the 3D orthogonal class. To accurately estimate ν, several quantities have been
used in previous work such as the reduced localization length obtained from transfer-matrix calculations,
which gives ν = 1.57 ± 0.02 [3], and energy level statistics studies, which gives ν = 1.44 ± 0.2 [4].

An alternative approach is a direct study of the multifractal spectrum of the wavefunction at the MIT
[5–8]. In principle, the system size dependence of different characteristics of the multifractal spectrum
f(α) can be used for such a scaling study. In this work, we will determine ν using the parameter α0 as
the scaling variable. α0 is the location of the maxima of both the multifractal spectrum and the probability
density function (PDF) of the variable α = −ln |ψi|2/lnL [8]. Hence ν will be estimated from the raw
statistics of wave function intensities |ψi|2. In the regime of extended states where the disorder is weak,
α0 approaches the dimension of the support d = 3 upon increasing system size L such that in the zero
disorder limit only one value α(W = 0) = 3 exists. Whereas in the localized region, α0 increases with L.
At the critical point of the MIT, α0 is scale invariant, i.e. a constant independent of L. These characteristics
are consistent with a second order phase transition and it has been suggested [9, 10] that near the critical
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point α0 follows the scaling relation

α0(W ) − α0(Wc) ∝ |W −Wc|L 1
ν . (1)

However, no high-precision numerical test of this relation has ever been performed and one of the aims
of the present study is to test its validity based in part on the high-quality wave function data presented in
Refs. [6–8].

In order to estimate ν from finite-size data, we employ the usual finite-size scaling method [3], starting
from the assumption that all values of α0(W,L) can be described by a common scaling curve F(χrL

1/ν ,
χiL

y). There are two corrections to the universal scaling as in (1): (i) nonlinearities in W of the scal-
ing variables and, (ii) a correction due to an irrelevant scaling variable χi that takes into account the
systematic shifting with L of the crossing point in the plot of α0(W,L) vs W and that should disap-
pear for large enough system sizes. After Taylor expansions of both arguments in F , the scaling curve
becomes α0(W,L) =

∑nI

l=0

∑nR

j=0 χ
l
iL

lyaljχ
j
rL

j/ν , with a10 = a01 = 1, χr(ω) =
∑mr

n=1 bnω
n,

χi(ω) =
∑mi

n=0 cnω
n, w = 1 − W/Wc, bn and cn are coefficients. We will obtain the values of α0

from the scaling of the generalized inverse participation ratios and also directly from the PDF as described
in the following sections.

2 Determination of α0 from the generalized inverse participation ratio

Given a lattice with volume Ld, the generalized inverse participation ratios (gIPR) are defined as Pq =
Ld

〈|ψi|2q
〉
. Here the average 〈· · · 〉 is over all sites and disorder realizations. The scaling law for Pq is

expressed as Pq(λ) ∝ λτq where λ is an effective length scale. The Legendre transformation of the mass
exponents τq is the multifractal spectrum f(α) = qαq − τq with αq = dτq/dq. The α0 corresponds exactly
to the moment q = 0, that is α0 = dτq/dq

∣
∣
q=0

. Let us briefly discuss our numerical procedure to obtain α0

based on the scaling law of the gIPR [6, 7]. We consider a cubic lattice with linear length L and divide it
equally into boxes of size l such that the effective length scale becomes λ = l/L. Using the box probability

μk =
∑l3

i=1 |ψi|2, the gIPR is now Pq = λ−d
〈
μq

k

〉
. Finally, from the definition of τq in the scaling law we

have α0 = 〈lnμk〉 / lnλ. To determine α0 for a fixed L, the box size is varied with values in the range of
l ∈ [5, L/2] and α0 is computed to be the slope of the linear plot of 〈lnμk〉 versus lnλ. Fig. 1 shows the
values of α0 versus W and the fit obtained from the finite size scaling method. Here we have considered
system sizes in the range L ∈ [20, 30, · · · , 100] with 104 eigenstates for each L and W .

Fig. 1 Position α0 of the maximum of f(α)
shown as a function of disorder W for W ∈
[16.2, 16.3, · · · , 16.8, 17.5]. Errors as shown de-
note one standard deviation. The fit (lines) used
has the following parameters: nI = 1, nR = 3,
mi = 1, mr = 1 and y ∼ −5. Starting in
the weak disorder regime, the different lines cor-
respond to different L from L = 20 (top) to
L = 100 (bottom). The estimated critical param-
eters are Wc = 16.56±0.01 and ν = 2.56±0.06.
The goodness of fit is 0.1.
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3 Determination of α0 from the probability density function

The distribution of |ψi|2 is well-defined by the spread of the α values being that |ψi|2 = L−α. The PDF
PL(α) for α = −ln |ψi|2/lnL satisfies PL(α) = PL(α0)Lf(α)−d. Since f(α) ≤ d, the maximum of the
PDF is exactly located at α = α0. This relation between PL(α) and f(α) gives a direct correspondence
between the two. Here, the PDF was numerically determined by the histogram of α values [8]. To avoid
the effects of bin size caused by the histogram method, the maximum of the PDF is instead more precisely
estimated from the inflection point of the cumulative distribution function (CDF). Since in the first ap-
proximation the PL(α) near the maximum can be regarded to be a Gaussian distribution [8, 11], we fit the
CDF with [1+ Erf(α− α0/

√
2b)]/2 by taking 10% of the total points around its inflection point (α0). The

scaling plot as obtained by the current method is shown in Fig. 2.

Fig. 2 Values of α0 versus W for W ∈
[15.0, 15.5, 16.2, 16.3, · · · , 16.8, 17.5, 18.0], er-
rors and lines as before in Fig. 1. The fit has the
parameters: nI = 1, nR = 5, mi = 0, mr = 3
and y ∼ −1.5. The corresponding critical param-
eters are Wc = 16.47±0.04 and ν = 2.36±0.07.
Goodness of fit is 0.1.

4 Conclusions

The multifractal spectrum f(α) is scale invariant at criticality [6,7]. This means that in principle all values
of αq can be used as a scaling parameter to determine the critical exponent of the transition. Here, we have
concentrated on α0, which is the most easily obtained of all the αq, as it is simply given by the position of
the maxima of f(α) and the PDF. In addition, we have also performed a similar finite-size scaling analysis
for α1 (where f ′(α)

∣
∣
α=α1

= 1) and α2 (obtained from the usual inverse participation ratio Ld
〈|ψi|4

〉
).

Results will be presented elsewhere. We find, quite surprisingly, that the extracted estimates for ν are
consistently larger than commonly accepted [3, 4]. Their values are in the range of 2.1 ∼ 2.5. Since the
size of the samples studied as well as the number of disorder realization is quite large, we are confident
that these results are not due to insufficient numerical accuracy. Hence we speculate that it is the functional
form of (1) which is incorrect. We assume a proper derivation of the scaling form of f(α) and the αq will
again allow the standard values to be reconfirmed.
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