Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation

NanoLab, Salamanca University, Pza. de la Merced, Edificio Trilingue, Salamanca, 37008, Spain
meziani@usal.es

K. Fobelets
Department of Electrical and Electronic Engineering, Imperial College, London, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Received 12 November 2016
Accepted 28 November 2016

We report on room temperature non-resonant detection of terahertz radiation using strained Silicon MODFETs with nanoscale gate lengths. The devices were excited at room temperature by an electronic source at 150 and 300 GHz. A maximum intensity of the photoresponse signal was observed around the threshold voltage. Results from numerical simulations based on synopsis TCAD are in agreement with experimental ones. The NEP and Responsivity were calculated from the photoresponse signal obtained experimentally. Those values are competitive with the commercial ones. A maximum of photoresponse was obtained (for all devices) when the polarization of the incident terahertz radiations was in parallel with the fingers of the gate pads. For applications, the device has been used as a sensor within a terahertz imaging system and its ability for inspection of hidden objects was demonstrated.

Keywords: Si-MODFET; Terahertz detector; Plasma waves.

1. Introduction

The development of novel materials, concepts and device designs for terahertz radiation detection using semiconductors has recently fueled the research of room temperature THz detectors. In early 90’s, Dyakonov et al. theoretically demonstrated the possibility of using sub-micron field effect transistors as detectors of terahertz radiation by means of the oscillations of plasma waves in their channel. Those devices present many advantages: low cost, small size, room temperature operation, and high speed response that make them highly competitive with other technologies. Room temperature detection of sub-terahertz radiation has been demonstrated by using different types of transistors such as commercial GaAs FETs and Si-MOSFETs. An array of Si-MOSFETs was
reported\(^6\) with responsivity \(\sim 70 \text{ kV/W}\) and NEP (Noise Equivalent Power) \(\sim 300 \text{ pW/Hz}^{1/2}\). Recently, asymmetric double grating gates devices based on GaInAS/InP HEMTs have shown a record of responsivity and NEP of around 20 kV/W and 0.48 pW/Hz\(^{1/2}\), respectively.\(^7\) Inspection feature of terahertz imaging has been demonstrated using those detectors.\(^5-8\) New devices based on topological insulators\(^9\) or graphene\(^10-11\) are also investigated toward higher performance in terms of responsivity and NEP.

In the present work, we investigated room temperature terahertz detection using Strained Silicon Modulation field effect transistor (MODFET) with different gate lengths. Those devices are compatible with the mainstream CMOS technology and do show higher mobility in comparison with CMOS ones. Experimental results show a good level of response to terahertz radiation at 150/300 GHz. Simulation results, based on 2D numerical studies using Synopsys TCAD,\(^12\) show a non-resonant response in agreement with measurements. Very competitive values of parameters performance (NEP and responsivity) were obtained. Our device was used as a sensor within a THz imaging system and inspection of hidden objects was demonstrated.

2. Strained Silicon MODFET and TCAD Modeling

The material system Si/SiGe allows the creation of a thin layer of strained silicon under tetragonal (biaxial tensile) strain. This strain has significant implications for the band structure of the semiconductor.

Tetragonal strain has the effect of lifting the six-fold degeneracy of the conduction band in silicon into a two-fold and four-fold degenerate set. The deformation potential of the strain lowers the energy of the two valleys with their long axis perpendicular to the Si/SiGe interface. The amount of energy lowering is dependent on the degree of strain. It has been theoretically predicted\(^13\) that approximately 0.8 % strain, resulting from a Si\(_{0.8}\)Ge\(_{0.2}\) alloy, provides sufficient lowering that only the two-fold degenerate valleys are occupied at room temperature for low values of the electric field. Since intervalley carrier scattering may only occur between degenerate minima, electrons in a layer of (tensile) strained silicon would undergo a lower number of intervalley scattering events per unit time – a considerable part of the intervalley scatterings that take place in a bulk material will vanish in strained Si as there are fewer possible final states for a carrier to scatter into – than in a similar layer of bulk silicon. The combination of lower scattering rates (higher values of the momentum relaxation time) and a lower value of the electron conductivity mass as compared to bulk Si makes tensile strained silicon layers excellent candidates to be used in high-mobility FET channels as the transport in those structures is parallel to the Si/SiGe interface.

The epistructure of the MODFETs used in this work was grown by molecular beam epitaxy (MBE) on a thick relaxed SiGe virtual substrate grown by low-energy plasma-enhanced chemical vapor deposition (LEPECVD) over a p-doped conventional Si wafer [Fig. 1(a)]. The final Ge molar concentration in the virtual substrate was \(x_{\text{Ge}} = 0.45\). The device had a 12 nm tensile strained Si channel, sandwiched between two heavily doped SiGe electron supply layers to generate a high carrier density in the Strained-Si quantum
Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation

well;12 to ensure high channel mobility spacers were used to reduce remote impurity scattering by dopants in the supply layers. The ohmic contacts were not self-aligned, the gate electrode was not symmetrically placed between source and drain. All devices had a Ti shape design [Fig. 1(b)] and were mounted on the same dual inline package (DIL14). Table 1 shows the geometrical parameters of three transistors; typical transfer characteristics are presented in the inset of Figs. 3 and 4.

Owing to the nature of the carrier transport in submicron length gate devices, we used a hydrodynamic (2DHD) model for the majority carriers (electrons) self-consistently coupled to a two-dimensional solution of the Poisson equation.14 Transport parameters for both holes and electrons were obtained by fitting uniform-field Monte Carlo results obtained for unstrained SiGe and for Si under tensile strain. In the 2DHD simulations impurity de-ionization, Fermi-Dirac statistics and mobility degradation due to both longitudinal and transverse electric field were taken into account. The source and drain regions were simulated as non-self-aligned implanted contacts.

Table 1. Geometrical parameters of the SiMODFETs.

<table>
<thead>
<tr>
<th>Device</th>
<th>L_{SD} (μm)</th>
<th>L_g (nm)</th>
<th>W_{SD} (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device 1</td>
<td>2</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Device 2</td>
<td>2</td>
<td>150</td>
<td>80</td>
</tr>
<tr>
<td>Device 3</td>
<td>2</td>
<td>500</td>
<td>80</td>
</tr>
</tbody>
</table>

The study of the THz photovoltaic response of the transistor is implemented by biasing source and gate and floating the drain contact while, as in measurements, a sub-THz sinusoidal signal was superimposed to the gate voltage as described in Refs. 2 and 3. The amplitude of the gate signal was fixed to 5 mV; the induced drain voltage exhibit both the same shape (sinusoidal) and frequency of the gate AC voltage ensuring that no frequency conversion takes place but its amplitude is considerably smaller than the one of the gate’s signal as in the sub-THz range the device is unable to amplify signals, additionally the mean value of the induced drain voltage were negative in good agreement with theoretical models.2,3
The charge boundary condition for the floating electrode was specified as:
\[\oint \overline{D} \, d\overline{s} = Q, \]

where \(\overline{D} \) is the displacement vector, \(Q \) is the total charge and the integral is evaluated over the drain contact surface. A time-domain simulation was subsequently carried out to obtain the photovoltaic response (Fig. 2).

3. Results and Discussions

The devices were excited at room temperature by a dual-frequency electronic source based on frequency multipliers. The emission frequencies are 150 and 300 GHz with output power levels of 4 mW and 6 mW, respectively. The incoming radiation intensity was modulated by a mechanical chopper between 0.233 to 1.29 kHz and coupled to the device via the metallization pads and bounding wires. The induced photoresponse (\(\Delta u \)) signal was measured by using a lock-in technique. Typical obtained photoresponse signals vs. gate voltage are shown in Fig. 3 for device 1 with \(L_g = 100 \) nm under excitation of 150 (blue square symbol) and 300 GHz (blue dotted symbol). Figure 4 shows the case of device 3 with \(L_g = 500 \) nm under excitation of 150 GHz (blue square symbol) and 300 GHz (blue dotted symbol). For both cases, it’s clearly seen the high value of the signal to noise ratio and a maximum intensity was observed around the threshold voltage. This behavior has been reported earlier and explained as non-resonant (broadband) detection due to low quality factor \((Q = \omega \tau < 1) \) i.e. low mobility in the device’s channel. In the present case, the device shows higher channel mobility \((\sim 1300 \, \text{cm}^2/\text{V·s})\) as compared to the conventional Si-MOSFET \((\sim 200 \, \text{cm}^2/\text{V·s})\) the quality factor was estimated around 0.13 at \(f = 150 \) GHz and \(-0.27\) at \(f = 300 \) GHz and do not reach the resonance condition.
Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation

Responsivity as well as the Noise Equivalent Power (NEP) are the key parameters to determine the performance of this detectors. The NEP is given by: \(N_{th}/R_v \), where \(N_{th} \) is the thermal noise of the transistor in V/Hz\(^{0.5} \) and \(R_v \) is the responsivity in V/W. Since detection was studied at zero drain bias the thermal noise \(N_{th} = (4kT R_{ds})^{0.5} \) was the only source of noise of the transistor. Here \(R_{ds} \) is the drain-to-source resistance, which was extracted from the transfer characteristics measured at low drain bias corresponding to the linear regime (inset of Figs. 3 and 4). The responsivity is given as: \(R_v = \Delta u \cdot S_t / (P_t \cdot S_a) \), where \(\Delta u \) is the measured photoresponse, \(S_t \) is the radiation beam spot area, \(S_a \) the active area, and \(P_t \) the total incident power surrounding the detector. The radiation beam power at the detector position was estimated to be around 0.5/1 mW at 150/300 GHz, respectively. The spot area \(S_t \) is given by \(\pi r^2 \) where \(r \) is the radius of the beam spot (~1.5 mm @ 300 GHz and 3.3 mm @ 150 GHz). Since the area of both transistors with contact pads [Fig. 1(b)] was much smaller than the diffraction limit area \(S_\lambda = \lambda^2/4 \), the active area was taken equal to \(S_\lambda \). Figure 4 shows the NEP = \(N_{th}/R_v \) for device 1 under excitation of 150 (blue dotted) and 300 GHz (red square). As seen, the device shows a minimum NEP around the threshold voltage. Therefore, the NEP\(\text{min} \) and maximum responsivity \((R_v\text{-max}) \) for this device are: at 150 GHz, NEP\(\text{min} \sim 150 \text{ pW/Hz}^{0.5} \), \(R_v\text{-max} \sim 10 \text{ V/W} \) and at 300 GHz, NEP ~ 500 pW/Hz\(^{0.5} \), \(R_v \sim 3 \text{ V/W} \).

Table 2 summarizes the obtained NEP and \(R_v \) for the remaining studied devices at 150 and 300 GHz. Device 2 with \(L_g = 150 \text{ nm} \) shows the best performance at 150 GHz where: \(R_v\text{-max} \sim 15 \text{ V/W} @ 150 \text{ GHz} \) and NEP\(\text{min} \sim 15 \text{ pW/Hz}^{0.5} \). This must be attributed to the large photoresponse signal exhibited by this device and a better coupling with the incoming terahertz radiation. Those obtained values of NEP and responsivity are comparable to the commercial room temperature terahertz detectors like golay cell, pyroelectric detector, and Schottky diode. However, the Si-MODFET presents the advantage of working at higher modulation frequency.
Table 2. Calculated NEPs and R_V for different devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>150 GHz</th>
<th>300 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEP (pW/Hz$^{0.5}$)</td>
<td>R_V (V/W)</td>
</tr>
<tr>
<td>Device 1</td>
<td>158</td>
<td>9.8</td>
</tr>
<tr>
<td>Device 2</td>
<td>125</td>
<td>15</td>
</tr>
<tr>
<td>Device 4</td>
<td>400</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Fig. 5. Noise equivalent power as a function of the gate voltage of Device 1 under different THz excitations: 150 GHz (blue dotted), 300 GHz (red square), $T = 300$ K.

Fig. 6. Noise equivalent power as a function of the gate voltage of Device 4 under different THz excitations: 150 GHz (blue dotted), 300 GHz (red square), $T = 300$ K.

Fig. 7. Photoresponse vs. rotation angle for all devices under excitation of 300 GHz. Inset shows the devices mounted on dual in line package and at 0° where polarisation of THz beam is parallel to the gates pads.

The bonding wires and the metallic pads could play an antenna role to couple the incoming terahertz radiation to the 2D electron channel.16-18 Sakowicz et al.17 have shown that at low frequencies the radiation is coupled to the transistor mainly by bonding wires, whereas at higher frequencies (> 100 GHz) the metallization of the contact pads plays the role of efficient antennas. Figure 7 shows the photoresponse signal as a function of the polarization of the incoming THz radiation (linearly polarized). In measurements, the
device was rotated in the plane perpendicular to the terahertz beam and the photoresponse signal was measured for each angular position of the device. All devices were mounted on the same dual in line package (Fig. 7) and under excitation of 300 GHz. A maximum intensity signal was obtained around the threshold bias for each angle. It is clearly seen for all the devices, that a maximum of the signal results when the incoming radiation is parallel to the gate fingers pads. We can conclude that to maximize the detection of THz signals these must be polarized in a direction parallel to the gate pads.

4. Terahertz Imaging

To demonstrate their use for practical applications, the detector was used as a sensor within a terahertz imaging system. The emitted radiation from the source at 150 and 300 GHz was collimated and focused through different off-axis parabolic mirrors. The image was collected in transmission mode. A visible red LED in combination with an indium tin oxide (ITO) mirror are used for the alignment of the terahertz beam. More information about the terahertz imaging system setup can be found in Ref. 8. The radiation passes through the hidden object and the intensity measured by the device biased around the threshold voltage for maximum intensity of the signal. Figure 8 shows the terahertz images obtained at 150 and 300 GHz as well as the visible one. Better resolution was obtained at 300 GHz which is related to lower wavelength (\(\lambda = 1\) mm). A clear terahertz image of the inspected object was observed.

![Terahertz Imaging Images](image.png)

Fig. 8. Visible image (left) and terahertz ones (right) at 150/300 GHz obtained at room temperature with Device 4 with \(L_g = 500\) nm.

5. Conclusion

We report on non-resonant detection of terahertz radiation at 150 and 300 GHz at room temperature by using strained-Si MODFETs with different gate lengths. Simulation results, based on 2D numerical studies with Synopsys TCAD, show a non-resonant response in agreement with measurements. Competitive values of the performance parameters (NEP and responsivity) were obtained. We have shown that in this case the gate pads are playing the role of antennae to couple the THz radiation to the 2D electron channel. For practical use of those detectors, a terahertz imaging for inspection of hidden objects was demonstrated.
Acknowledgments

This work was financially supported by the MINECO/FEDER Research Grant #TEC2015-65477-R and FEDER/Junta de Castilla y León Research Grant #SA045U16. Authors thank Dr. W. Knap and D. But from Teralab at Montpellier 2 University for calibration of our detectors. Y. M. Meziani acknowledges the financial support from RIEC nation-wide Collaborative Research Project, Sendai Japan.

References

Sub-Micron Gate Length Field Effect Transistors as Broad Band Detectors of Terahertz Radiation

