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Solitons in a nonlinear model of spin transport in helical molecules

P. Albares,1 E. Díaz,2 Jose M. Cerveró,1 F. Domínguez-Adame,2 E. Diez,1 and P. G. Estévez1

1NANOLAB, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
2GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain

(Received 13 November 2017; published 8 February 2018)

We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable
helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional
Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing
nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons
such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing
and defocusing nonlinear interaction is presented and discussed.
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I. INTRODUCTION

Nonlinearity in organic helical molecules acquired remark-
ably relevance after they were put forward as a possible
explanation of how the energy released from the adenosine
triphosphate protein is transferred across α-helical proteins
[1]. Nowadays they play a fundamental role to describe
DNA denaturalization by way of the so-called Peyrard-Bishop
model [2]. These models were also important for a better
understanding of the subtleties and complexities of charge
and energy transport properties of DNA molecules [3–5]. In
all these scenarios, it is assumed that organic molecules are
quite deformable and consequently the interaction between
quasiparticles (electrons or excitons) and the lattice vibrations
is not negligible. On the contrary, such interaction enables the
existence of stable solitons that propagate coherently along the
molecule.

In the last decade, a large variety of experiments have
shown the existence of chiral spin-selectivity in organic helical
molecules [6–14]. This effect results from the spin-orbit cou-
pling (SOC) between the electronic momentum and the electric
field created by the helical arrangement of molecular dipoles.
Many theoretical models have been proposed to explain these
experimental evidences within different frameworks [15–24].
However none of them was able to provide full quantitative
agreement with experimental data yet. Most recently, a few
studies highlight the influence of the electron-lattice interaction
on spin transport in organic helical molecules [25–27]. This
opens a new field of study within the scope of nonlinear
quantum dynamics that we further explore in this work. Our
results will be also relevant for other physical systems, mainly
Bose-Einstein condensates (BECs). Experiments carried out
in BECs have shown the versatility to study the influence
of a helical SOC in nonlinear systems [28]. In this regard,
there are several theoretical studies that predict the existence
of different types of propagating solitons depending on the
interacting parameters of BECs [29–32].

In the following, we briefly introduce the nonlinear model
that describes the interaction of an electron moving along the
axis of a deformable helical molecule. In addition to the kinetic

energy, the electron undergoes an unconventional Rashba-like
SOC arising from its motion in the helical array of peptide
dipoles [27,33]. The electron-lattice interaction gives rise to
an additional nonlinear term to the Schrödinger equation. We
start by demonstrating the integrability of the model using
the Painlevé test [34]. We then turn to the main goal of the
work, namely the detailed analysis of the solitons supported
by the equation. For defocusing nonlinear interaction, we find
dark solitons that generalize the solitons of the Manakov
system [35]. For focusing nonlinear interactions, breathers
and rogue waves are explicitly described. Furthermore, in
this case solutions in terms of cnoidal waves also exist. The
hyperbolic limit yields a generalization of the well-known
Davydov soliton [1].

II. NONLINEAR SCHRÖDINGER EQUATION FOR A
DEFORMABLE HELICAL MOLECULE

Our starting point to describe the spin dynamics in he-
lical molecules is the one-dimensional model introduced in
Refs. [27,33]. In this model, the spin-molecule interaction
arises from an unconventional Rashba-like SOC, reflecting
the helical symmetry of molecules due to the electron motion
in a helical arrangement of peptides dipoles. To be specific,
a helical conformation of tangentially oriented dipoles is
considered to be spin-orbit coupled to the electron motion
directed along the helical axis.

Assuming that the helical molecule is oriented along the Z

axis, the resulting dimensionless Hamiltonian H reads

H = −
(

∂ξξ 2πγ e−i2πξ (i∂ξ + π )
2πγ ei2πξ (i∂ξ − π ) ∂ξξ

)
, (1)

where energy is measured in units of h̄2/2mb2,m and b being
the electron mass and the pitch of the helix, respectively.
Here, ξ = z/b, γ stands for a dimensionless constant that is
proportional to the magnitude of the SOC, and the subscript
indicates differentiation with respect to ξ . In order to de-
scribe the electron-lattice interaction, we add a nonlinear term
to the Hamiltonian (1). Such a term is expected to appear
within the adiabatic approximation, according to Davydov’s
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theory [1]. The nonlinear Schrödinger equation (NLS)
describing the dynamics of the spinor state χ (ξ,t) =
[χ1(ξ,t),χ2(ξ,t)]ᵀ reads

i∂tχ (ξ,t) = Hχ(ξ,t) + 2g[χ †(ξ,t) · χ (ξ,t)]χ(ξ,t) , (2)

where H is given in Eq. (1). Hereafter we consider both g > 0
(defocusing case) and g < 0 (focusing one).

The integrability of this equation can be analyzed by using
the Painlevé test [34,36]. This test proves the integrability of
Eq. (2) and yields its three-component Lax pair. The Painlevé
property can also be used to derive Darboux transformations
and an iterative procedure for obtaining solutions. It can also
be proved that Eq. (2) is the only integrable case of a model
very recently put forward by Kartashov and Konotov to study
the dynamics of BECs with helical SOC [31]. Furthermore,
Eq. (2) can be considered as a generalization of the Manakov
system [35,37], which is often also called vector NLS system
[38]. Integrability properties of this Manakov system and
the Painlevé property are described in references [39,40].
Different generalizations of this Manakov system can be found
in Ref. [41] and more recently in Ref. [42].

III. THE SINGULAR MANIFOLD METHOD

We start by rewriting Eq. (2) in autonomous form through
the substitution

χ(ξ,t) = Ng

(
e−iπ(ξ+πt) 0

0 eiπ(ξ−πt)

)
α(ξ,t) , (3)

where Ng = √
1/g for g > 0 (defocusing nonlinear inter-

action) and Ng = i
√

1/ | g | for g < 0 (focusing nonlinear
interaction). In both cases, the change yields the equations

(i∂t + ∂ξξ − 2iπ∂ξ − 2α†· α)α1 + 2iπγ ∂ξα2 = 0 ,

2iπγ ∂ξα1 + (i∂t + ∂ξξ + 2iπ∂ξ − 2α†· α)α2 = 0 , (4)

where αj with j = 1,2 denotes the components of the spinor
α(ξ,t). In Ref. [31], Kartashov and Konotop proposed a one-
dimensional nonlinear model for moving solitons in a spatially
inhomogeneous BEC with helical SOC. It is not difficult to
prove that the Gross-Pitaevskii equation for that model when
the Zeeman splitting is negligible reduces to Eq. (4).

A powerful tool for the study of the integrability of a system
as Eq. (4) is the Painlevé test [34], which requires to introduce
the following ansatz for the components of α:

α1 =
j=∞∑
j=0

ajφ
j−1 , α2 =

j=∞∑
j=0

bjφ
j−1 . (5)

This ansatz means that the solutions are single valued in the
singularity manifold φ(ξ,t) = 0. The leading order analysis
trivially yields

a0 = Aφξ , b0 = Bφξ , (6)

where AA† + BB† = 1.
A straightforward calculation provides triple resonances in

j = 0 and j = 3 and a single resonance in j = 4. The symbolic
calculations have been handled with MAPLE. The conditions
at the resonances are identically satisfied. Therefore, we can
conclude that the solutions are single valued around the singu-
larity manifold and the equation has the Painlevé property. This

property is usually considered as a proof of the integrability
of the equation, especially when it can be used to derive the
linear spectral problem (Lax pair) associated to a nonlinear
equation [36]. The equivalence between the Painlevé property
and the Lax pair can be achieved through the so-called Singular
Manifold Method (SMM) [34,43]. This is the tool that we shall
use in the rest of the paper to derive the main properties and
solutions of the integrable nonlinear system (4). It is worth
mentioning that the same Painlevé test, when applied to the
model introduced by Kartashov and Konotop in Ref. [31], is
only satisfied when the Zeeman splitting vanishes. Therefore,
we are led to the conclusion that Eq. (4) is the only integrable
case of the model given in Ref. [31].

The SMM implies the truncation of the series (5) to the
constant level

α
[1]
1 = A

φξ

φ
+ α

[0]
1 , α

[1]
2 = B

φξ

φ
+ α

[0]
2 . (7)

Equation (7) is an auto-Bäcklund transformation, where α[0]

is the seed solution and α[1] the iterated one. Substitution of
Eq. (7) into Eq. (4) yields polynomials in powers of φ whose
coefficients should be zero. The cumbersome calculations can
be handled with the aid of MAPLE. The result of this procedure
are summarized in what follows.

A. Expressions of the fields in terms of the singular manifold

An easier way to deal with equations is obtained if we define
the following quantities:

r = φt

φξ

, v = φξξ

φξ

, s = vξ − v2

2
, (8)

such that the expressions of the seed fields are

α
[0]
1 = −Aξ + iπ (A − γB) − A

2
(v + ir) ,

α
[0]
2 = −Bξ − iπ (B + γA) − B

2
(v + ir) . (9)

B. SMM equations

The equations that the singular manifold should satisfy in
order to fulfill the truncation can be written as

r = −2λ + i(A†Aξ + B†Bξ ) + π (AA† − BB†)

− γπ (AB† + A†B) , (10a)

At = iAξξ + 2πAξ − 2πγBξ − 2iπ2(1 + γ 2)A

+A

[
−rξ + ivξ − i

2
r2 − i

2
v2 − 2i(AξA

†
ξ + BξB

†
ξ )

]

+ 2Ar(AA
†
ξ + BB

†
ξ ) − 2iAπγ r(AB† + BA†)

+ 2Aπγ [AB
†
ξ − B†Aξ + BA

†
ξ − A†Bξ ]

− 2Aπ [ir(BB† − AA†) + 2(B†Bξ + AA
†
ξ )] , (10b)
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and

Bt = iBξξ − 2πBξ − 2πγAξ − 2iπ2(1 + γ 2)B

+B

[
−rξ + ivξ − i

2
r2 − i

2
v2 − 2i(AξA

†
ξ + BξB

†
ξ )

]

+ 2Br(AA
†
ξ + BB

†
ξ ) − 2iBπγ r(AB† + BA†)

+ 2Bπγ [AB
†
ξ − B†Aξ + BA

†
ξ − A†Bξ ]

+ 2Bπ [−ir(BB† − AA†) + 2(A†Aξ + BB
†
ξ )] , (10c)

where the subscript t indicates time derivative.

C. Eigenfunctions

The set of Eqs. (10) can be simplified by introducing
three function ψ(ξ,t), ω(ξ,t) and η(ξ,t) through the following
definitions:

A = ω

ψ
, B = η

ψ
, (11)

that allow us to write the condition AA† + BB† = 1 as

ωω† + ηη† − ψψ† = 0 . (12)

From Eqs. (10) we have

v = ψξ

ψ
+ ψ

†
ξ

ψ† ,

r = −2λ − i

(
ψξ

ψ
− ψ

†
ξ

ψ†

)
. (13)

According to Eq. (8), the singular manifold can be obtained by
integration of the differential

dφ = ψψ†dξ − [2λψψ† + i(ψξψ
† − ψψ

†
ξ )]dt . (14)

D. Spatial part of the Lax pair

If we define the vector

� =
⎛
⎝ψ

ω

η

⎞
⎠, (15)

the expressions given in Eq. (9) combined with Eq. (12) yield

�ξ = V1(α1,α2)� + iλV2� + iπV3(γ )� , (16)

where

V1 =
⎛
⎝ 0 −α

†
1 −α

†
2−α1 0 0

−α2 0 0

⎞
⎠,

V2 =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, V3 =

⎛
⎝0 0 0

0 1 −γ

0 −γ −1

⎞
⎠. (17)

E. Temporal part of the Lax pair

A similar result can be obtained for the time derivative of
�:

� t = iU1(α1,α2)� + πU2(π,γ,α1,α2)�

+ 2λU3(λ,α1,α2)� , (18)

where

U1(α1,α2) =

⎛
⎜⎝α1α

†
1 + α2α

†
2 (α†

1)ξ (α†
2)ξ

−(α1)ξ −α1α
†
1 −α1α

†
2

−(α2)ξ −α2α
†
1 −α2α

†
2

⎞
⎟⎠,

U2(π,γ,α1,α2) =
⎛
⎝−iπ (1 + γ 2) γα

†
2 − α

†
1 γα

†
1 + α

†
2

γα2 − α1 0 0
γα1 + α2 0 0

⎞
⎠,

U3(λ,α1,α2) =
⎛
⎝iλ α

†
1 α

†
2

α1 −iλ 0
α2 0 −iλ

⎞
⎠. (19)

Equations (16) and (18) constitute a three component Lax pair
[38,41], whose compatibility condition yields Eq. (4).

F. Darboux transformations

One of the main advantages of the above-described SMM
is that it allows us to construct an iterative procedure to obtain
highly nontrivial solutions by means of the eigenfunctions of
a trivial seed solutions. This method have been described and
successfully applied in Refs. [36,43]. Let

α[0] =
(

α
[0]
1

α
[0]
2

)

be a seed solution to Eq. (4) and

�
[0]
j =

⎛
⎜⎜⎝

ψ
[0]
j

ω
[0]
j

η
[0]
j

⎞
⎟⎟⎠ , j = 1,2 , (20)

two eigenvectors of the Lax pair associated to α[0] with
eigenvalues λj . These Lax pairs are

(
�

[0]
j

)
ξ

= V1(α[0])�[0]
j + iλjV2�

[0]
j + iπV3(γ )�[0]

j ,(
�

[0]
j

)
t
= iU1(α[0])�[0]

j + πU2(π,γ,α[0])�[0]
j

+ 2λjU3(λj ,α
[0])� [0]

j , j = 1,2 . (21)

The associated singular manifolds are defined through the
following exact derivatives [see Eq. (14)]:

dφ
[0]
j = (

ψ
[0]
j

)(
ψ

[0]
j

)†
(dξ − 2λjdt)

− i
[(

ψ
[0]
j

)
ξ

(
ψ

[0]
j

)† − (
ψ

[0]
j

)†
ξ

(
ψ

[0]
j

)]
dt . (22)

According to Eq. (7), we can use the singular manifold φ
[0]
1 to

construct an iterated solution α[1] in the following form:

α
[1]
1 = α

[0]
1 + ω

[0]
1

(
ψ

[0]
1

)†
φ

[0]
1

,

α
[1]
2 = α

[0]
2 + η

[0]
1

(
ψ

[0]
1

)†
φ

[0]
1

. (23)
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Equation (7) provides the following expressions for the
modulus:(

α
[1]
1

)(
α

[1]
1

)† = (
α

[0]
1

)(
α

[0]
1

)†
+

iπγ
[(

ω
[0]
1

)(
η

[0]
1

)† − (
ω

[0]
1

)†(
η

[0]
1

)]
φ

[0]
1

−
(

ω
[0]
1

(
ω

[0]
1

)†
φ

[0]
1

)
ξ

,

(
α

[1]
2

)(
α

[1]
2

)† = (
α

[0]
2

)(
α

[0]
2

)†
−

iπγ
[(

ω
[0]
1

)(
η

[0]
1

)† − (
ω

[0]
1

)†(
η

[0]
1

)]
φ

[0]
1

−
(

η
[0]
1

(
η

[0]
1

)†
φ

[0]
1

)
ξ

. (24)

This iterated solution α[1] has also a Lax pair. Let

�
[0]
1,2 =

⎛
⎜⎜⎝

ψ
[1]
1,2

ω
[1]
1,2

η
[1]
1,2,

⎞
⎟⎟⎠ (25)

be an eigenvector for α[1] with spectral parameter λ2 such that(
�

[1]
1,2

)
ξ

= V1
(
α[1]

)
�

[1]
1,2 + iλ2V2�

[1]
1,2 + iπV3(γ )�[1]

1,2,(
�

[1]
1,2

)
t
= iU1(α[1])� [1]

1,2 + πU2(π,γ,α[1])�[1]
1,2

+ 2λ2U3(λ2,α
[1])�[1]

1,2 , (26)

which allows us to construct the following singular manifold
φ1,2 by integrating:

dφ
[1]
1,2 = (

ψ
[1]
1,2

)(
ψ

[1]
1,2

)†
(dξ − 2λ2dt)

− i
[(

ψ
[1]
1,2

)
ξ

(
ψ

[1]
1,2

)† − (
ψ

[1]
1,2

)†
ξ

(
ψ

[1]
1,2

)]
dt . (27)

The Lax pair (26) can be understood as a nonlinear system
that couples the field α[1] and the eigenvector �

[1]
1,2. This

implies that the Painlevé expansion (23) for the fields should
be accompanied by a similar expansion for the eigenfunctions
that can be written in the following form:

ψ
[1]
1,2 = ψ

[0]
2 − ψ

[0]
1


1,2

φ
[0]
1

,

ω
[1]
1,2 = ω

[0]
2 − ω

[0]
1


1,2

φ
[0]
1

,

η
[1]
1,2 = η

[0]
2 − η

[0]
1


1,2

φ
[0]
1

. (28)

Substitution of Eqs. (23) and (28) in Eq. (21) yields


i,j = 

(
�

[0]
i ,�

[0]
j

)
= i

(
ω

[0]
i

)†(
ω

[0]
j

) + (
η

[0]
i

)†(
η

[0]
j

) − (
ψ

[0]
i

)†(
ψ

[0]
j

)
2(λi − λj )

,

(29)

where �
[0]
j is the eigenvector for the seed solution α[0] with

eigenvalue λj as defined in Eq. (21). It is easy to see that a
similar expansion could be applied to φ

[1]
1,2 in Eq. (27). The

result is

φ
[1]
1,2 = φ

[0]
2 − 
1,2


†
1,2

φ
[0]
1

. (30)

G. τ functions

As far as φ
[1]
1,2 is a singular manifold for α[1], we can iterate

Eq. (23) as

α
[2]
1 = α

[1]
1 + ω

[1]
1,2

(
ψ

[1]
1,2

)†
φ

[1]
1,2

,

α
[2]
2 = α

[1]
2 + η

[1]
1,2

(
ψ

[0]
1,2

)†
φ

[1]
1,2

, (31)

which combined with Eq. (18) yields

α
[2]
1 = α

[0]
1 + ω

[0]
1

(
ψ

[0]
1

)†
φ

[0]
1

+ ω
[1]
1,2

(
ψ

[1]
1,2

)†
φ

[1]
1,2

,

α
[2]
2 = α

[0]
2 + η

[0]
1

(
ψ

[0]
1

)†
φ

[0]
1

+ η
[1]
1,2

(
ψ

[1]
1,2

)†
φ

[1]
1,2

. (32)

Through the combination of Eq. (23) with Eq. (31), we
obtain the expressions of the second iteration in terms of the
eigenfunctions of the seed equations

α
[2]
1 = α

[0]
1

− 

†
1,2

(
ψ

[0]
1

)†(
ω

[0]
2

) + 
1,2
(
ψ

[0]
2

)†(
ω

[0]
1

)
τ1,2

+ φ
[0]
1

(
ψ

[0]
2

)†(
ω

[0]
2

) + φ
[0]
2

(
ψ

[0]
1

)†(
ω

[0]
1

)
τ1,2

,

α
[2]
2 = α

[0]
2

− 

†
1,2

(
ψ

[0]
1

)†(
η

[0]
2

) + 
1,2
(
ψ

[0]
2

)†(
η

[0]
1

)
τ1,2

+ φ
[0]
1

(
ψ

[0]
2

)†(
η

[0]
2

) + φ
[0]
2

(
ψ

[0]
1

)†(
η

[0]
1

)
τ1,2

, (33)

where we have defined the τ function τ1,2 as

τ1,2 = φ
[0]
1 φ

[0]
2 − 
1,2


†
1,2 . (34)

In conclusion, α[0] and its eigenfunctions �
[0]
j allow us to

obtain the first iterated solution α[1] as well as the second α[2]

through Eqs. (23) and (31) and the matrix 
i,j as defined in
Eq. (29). The following section is devoted to the use of this
procedure to build up soliton solutions.

IV. SOLITON SOLUTIONS

We start with the following trivial seed solution:

α[0] = j0e
−2ij 2

0 t

(
β1

β2

)
.
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β1 and β2 are parametrized as(
β1

β2

)
= 1

2

(
(1 + s) cos θ0 + (1 − s) sin θ0

(1 − s) cos θ0 − (1 + s) sin θ0

)
, (35)

where s = ±1. To deal with the focusing and defocusing cases
together, we can leave j0 as a free parameter. Actually j0 should
be real in the defocusing case and purely imaginary j0 = ih0,
in the focusing one. Solutions to the Lax pair (21) are

ψj = ekj (ξ+cj t)e
im0π(ξ−m0πt)

2 eij 2
0 t ,

ωj = dj e
kj (ξ+cj t)e

im0π(ξ−m0πt)
2 e−ij 2

0 t ,

ηj = hje
kj (ξ+cj t)e

im0π(ξ−m0πt)
2 e−ij 2

0 t , (36)

where

γ = tan(2θ0) , m0 = s

cos(2θ0)
. (37)

Furthermore, the constants cj , λj , and kj satisfy the rela-
tions

cj = m0π − 2λj ,

k2
j +

(
λ2

j + m0π

2

)2
= j 2

0 , (38)

that allows us to introduce an angle θj such that

λj = −m0π

2
+ j0 cos θj ,

kj = j0 sin θj . (39)

The coefficients dj and hj are

dj = − iβ1e
−iθj , hj = − iβ2e

−iθj . (40)

Equations (27) and (29) can be now easily used in order to
get

φ1 = 1

2j0 sin θ1

(
a1 + E2

1

)
,

φ2 = 1

2j0 sin θ2

(
a2 + E2

2

)
,


1,2 = i
ei(θ1−θ2) − 1

2j0(cos θ1 − cos θ2)
E1E2 , (41)

where a1 and a2 are arbitrary constants of integration and

Ej = ej0 sin θj [ξ+2(m0π−j0 cos θj )t] (42)

with j = 1,2. The τ function defined in Eq. (34) can be
explicitly written as

τ1,2 = 1

4k1k2

(
a1a2 + a2E

2
1 + a1E

2
2 + A1,2E

2
1E

2
2

)
, (43)

where

A1,2 = 1 − 2 sin θ1 sin θ2[1 − cos(θ1 − θ2)]

(cos θ1 − cos θ2)2
. (44)

FIG. 1. Squared modulus of the upper component of a two-soliton
solution |χ [2]

1 |2 as a function of ξ and t . Parameters are g = 2, θ0 =
0.5, θ1 = 1, θ2 = 1.2, s = 1, j0 = 1, and a1 = a2 = 1.

The first iteration can be now be obtained through Eq. (24)
as

∣∣α[1]
1

∣∣2 = β2
1j 2

0

(
1 − 1

j 2
0

[
(φ1)ξ
φ1

]
ξ

)
,

∣∣α[1]
2

∣∣2 = β2
2j 2

0

(
1 − 1

j 2
0

[
(φ1)ξ
φ1

]
ξ

)
, (45)

and the second iteration is deduced from Eq. (33) as

∣∣α[2]
1

∣∣2 = β2
1j 2

0

(
1 − 1

j 2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣α[2]
2

∣∣2 = β2
2j 2

0

(
1 − 1

j 2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
. (46)

A. Defocusing case (g > 0). Dark solitons

If we are dealing with g > 0, j0 should be a real parameter
and, according to Eq. (9), we have dark solitons which, for the
first iteration, are

∣∣χ [1]
1

∣∣2 = j 2
0

1 + s cos(2θ0)

2g

(
1 − 1

j 2
0

[
(φ1)ξ
φ1

]
ξ

)
,

∣∣χ [1]
2

∣∣2 = j 2
0

1 − s cos(2θ0)

2g

(
1 − 1

j 2
0

[
(φ1)ξ
φ1

]
ξ

)
, (47)

and the second iteration yields

∣∣χ [2]
1

∣∣2 = j 2
0

1 + s cos(2θ0)

2g

(
1 − 1

j 2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣χ [2]
2

∣∣2 = j 2
0

1 − s cos(2θ0)

2g

(
1 − 1

j 2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
. (48)

Figure 1 displays the upper component |χ [2]
1 |2 of a two-soliton

solution in the system center-of-mass reference frame after
the Galilean transformation ξ → ξ − (c1 + c2)t/2. Notice that
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the lower component is proportional to the upper one since
|χ [2]

2 |2 = |χ [2]
1 |2[1 − s cos(2θ0)]/[1 + s cos(2θ0)].

A particular case of Eq. (43) can be obtained by setting
θ2 = π − θ1 and a1 = a2 = cos θ1. In this case Eq. (43) yields

τ1,2 ∼ cosh
[
2j 2

0 sin(2θ1)t
]

+ cos θ1 cosh

[
2j0 sin θ1

(
ξ + 2sπ

cos(2θ0)
t

)]
. (49)

B. Focusing case (g < 0). Breathers

As it has been said before, for the focusing case, j0 should
be purely imaginary which means j0 = ih0 with h0 real. By
using Eq. (10a), the second iteration yields bright solitons

∣∣χ [2]
1

∣∣2 = h2
0

1 + s cos(2θ0)

2|g|

(
1 + 1

h2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣χ [2]
2

∣∣2 = h2
0

1 − s cos(2θ0)

2|g|

(
1 + 1

h2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
, (50)

where the equivalent of Eq. (43) now is

τ1,2 ∼ cosh
[
2h2

0 sin(2θ1)t
]

+ cos θ1 cos

[
2h0 sin θ1

(
ξ + 2sπ

cos(2θ0)
t

)]
, (51)

which is a solution periodic in ξ and hyperbolic in t . This solu-
tion constitutes a generalization of the Akhmediev’s breather
[37,44].

Furthermore, if we set θ1 = iθ̂1 in Eq. (51), the result is

τ1,2 ∼ cos
[
2h2

0 sinh(2θ̂1)t
]

+ cosh θ̂1 cosh

[
2h0 sinh θ̂1

(
ξ + 2sπ

cos(2θ0)
t

)]
,

(52)

which is a solution periodic in t and hyperbolic in ξ . It
is actually a generalization of the breather introduced by
Kuznetsov and Ma [45–47].

C. Focusing case (g < 0). Rogue waves

In the last years, rogue waves have been described as
a peculiar type of waves that appears from nowhere and
disappear without a trace. The well-known Peregrine soliton
[44] is an example of rogue wave for the focusing NLS
equation. In Ref. [37] rogue waves for the Manakov system
have been obtained. In this section, we will derive this type of
solutions to Eq. (4).

1. Case I

It is easy to see, that there exists limiting cases of Eq. (44)
when kj = 0. These cases arises when θj is 0 or π . The
corresponding eigenfunctions are

ψ1 = e
im0π(ξ−m0πt)

2 eij 2
0 t ,

ω1 = −iβ1e
im0π(ξ−m0πt)

2 e−ij 2
0 t ,

η1 = −iβ2e
im0π(ξ−m0πt)

2 e−ij 2
0 t . (53)

FIG. 2. Squared modulus of the upper component of a rogue
wave I. Parameters are g = −2, θ0 = 0.5, s = 1, and h0 = 1.5.

when θ1 = 0, λ1 = −m0π/2 + j0 and c1 = 2(m0π − j0),
and

ψ2 = e
im0π(ξ−m0πt)

2 eij 2
0 t ,

ω2 = iβ1e
im0π(ξ−m0πt)

2 e−ij 2
0 t ,

η2 = iβ2e
im0π(ξ−m0πt)

2 e−ij 2
0 t , (54)

for θ2 = π, λ2 = −m0π/2 − j0, and c2 = 2(m0π + j0).
For the focusing case, we take j0 = ih0 (h0 real) and obtain

the following results:

φ1 = ξ + 2πm0t − 2ih0t ,

φ2 = ξ + 2πm0t + 2ih0t ,

τ1,2 = (ξ + 2πm0t)
2 + 4h2

0t
2 + 1

h2
0

. (55)

The behavior of the upper component for the above value of τ1,2

is presented in Fig. 2 for g = −2, θ0 = 0.5, s = 1, and h0 =
1.5. The lower component is obtained after rescaling the upper
component and, therefore, it is not shown in the figure. This
solution can be considered as a generalization of the Peregrine
soliton [44].

2. Case II

It is straightforward to prove that there exists a slightly more
complicated solutions to the Lax pair (20). These solutions
are

ψ1 =
(

ξ + 2(m0π − j0)t + i

2j0

)
e

im0π(ξ−m0πt)
2 eij 2

0 t ,

ω1 = −iβ1

(
ξ + 2(m0π − j0)t − i

2j0

)
e

im0π(ξ−m0πt)
2 e−ij 2

0 t ,

η1 = −iβ2

(
ξ + 2(m0π − j0)t − i

2j0

)
e

im0π(ξ−m0πt)
2 e−ij 2

0 t ,
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FIG. 3. Squared modulus of the upper component of a rogue
wave II. Parameters are s = 1, g = −2, θ0 = 0.5, and h0 = 0.7.

when θ1 = 0, λ1 = −m0π/2 + j0 and c1 = 2(m0π − j0), and

ψ2 =
(

ξ + 2(m0π + j0)t − i

2j0

)
e

im0π(ξ−m0πt)
2 eij 2

0 t ,

ω2 = iβ1

(
ξ + 2(m0π + j0)t + i

2j0

)
e

im0π(ξ−m0πt)
2 e−ij 2

0 t ,

η2 = iβ2

(
ξ + 2(m0π + j0)t + i

2j0

)
e

im0π(ξ−m0πt)
2 e−ij 2

0 t ,

when θ2 = π, λ2 = −m0π/2 − j0 and c2 = 2(m0π + j0).
For the focusing case, we should choose j0 = ih0 which

yields the following results:

φ1 = (ξ + 2πm0t)

[
1

3
(ξ + 2πm0t)

2 − 4h2
0t

2 − 1

4h2
0

]

+ ih0

[
−2t(ξ + 2πm0t)

2 + 3t

2h2
0

+ 8

3
h2

0t
3

]
,

φ2 = φ
†
1,

τ1,2 = (ξ + 2πm0t)
2

[
1

3
(ξ + 2πm0t)

2 − 4h2
0t

2 − 1

4h2
0

]2

+h2
0

[
−2t(ξ + 2πm0t)

2 + 3t

2h2
0

+ 8

3
h2

0t
3

]2

+h2
0

[
(ξ + 2πm0t)

2 + 4h2
0t

2 + 1

4h2
0

]2

. (56)

Figure 3 displays the upper component of the solution corre-
sponding to Eq. (56) for s = 1, g = −2, θ0 = 0.5, and h0 =
0.7. The lower component is obtained after rescaling the upper
component and, therefore, it is not shown in the figure.

D. Focusing case (g < 0). Bright solitons

Elliptic solutions to Eq. (3) can be obtained through the
ansatz

α[0] = e−iϕξ,t)F (z)

(
β1

β2

)
, (57)

where z = ξ + ct . The result is

ϕ(ξ,t) = c

2

(
ξ + c

2
t
)

− k2t − πm0(ξ + πm0t) , (58)

and F (z) obeys the elliptic equation

Fzz − 2F 3 − k2F = 0,

whose solution is

F (z) = km√
1 − 2m2

cn
(

kz√
2m2 − 1

; m

)
, (59)

where cn is the Jacobi elliptic cosine. The elliptic index m and
k are arbitrary constants. The hyperbolic limit m = 1 yields,
for the focusing case (10a), the solution

χ =
√

1

| g |
k e−iϕ(ξ,t)

cosh [k(ξ + ct)]

(
e−iπ(ξ+πt) β1

eiπ(ξ−πt) β2

)
. (60)

This is a solution that can be normalized by imposing∫ ∞
−∞ χ † · χ dξ = 1. Therefore, the normalization implies

k = |g|/2. For this value of k, the normalized solution can
be finally written as

χ =
√| g |

2

ei�(ξ,t)

cosh
[ | g | (ξ + ct)/2

] (
e−iπξ β1

eiπξ β2

)
, (61)

where

�(ξ,t) = −
[

c

2

(
ξ + c

2
t
)

− g2

4
t

]

+π

[
sξ

cos(2θ0)
+ πγ 2t

]
. (62)

This solution is the generalization of the Davydov soliton [1]
that appears also in Ref. [31]. Notice that the magnitude of the
SOC is relevant only in the expression of the phase �(ξ,t).
The generalized Davydov soliton (61) has been recently put
forward to stress the impact of the local deformation of the
molecule about the carrier on spin-transport experiments [27].
In particular, it was found that the generalized Davydov soliton
(62) presents a well-defined spin projection onto the molecule
axis that it is preserved during its motion, in spite of the fact
that the electron spin is not a constant of motion of the linear
Hamiltonian (g = 0) [27].

V. CONCLUSIONS

In this paper we have proposed a generalization of the
Manakov system that includes an additional term with a SOC
constant γ . Our model appears in the description of the
spin dynamics in molecules with peptide dipoles in helical
conformation [33] or BECs with helical SOC in the absence of
Zeeman splitting [31]. We have studied the integrability of this
model by means of the Painlevé test. The result is that the model
has the Painlevé property and, therefore, it can be considered
as an integrable model, as opposed to different generalizations
that have not such property (e.g., model introduced by Kar-
tashov and Konotop with nonvanishing Zeeman splitting [31]).

A direct consequence of the Painlevé property is the
possibility of considering the singular manifold method as a
powerful tool to derive many of the properties usually related to
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a nonlinear integrable system. Actually, we have successfully
used the singular manifold method to derive a three component
Lax pair as well as binary Darboux transformations. These
Darboux transformations easily yields the definitions of τ func-
tions and an iterative method for the constructions of solutions.
For the defocusing case, we have obtained dark solitons that
generalize the solitons of the Manakov system. For the focusing
case, breathers and rogue waves have been explicitly described.
In addition, in this case case, solutions in terms of cnoidal
waves also exist. The hyperbolic limit yields a generalization of

the Davydov soliton whose spin projection onto the molecule
axis depends on the chirality of the molecule [27].
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