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1. Introduction

This article is devoted to the study of the derivative non-linear Schrédinger (DNLS) equation in 1+ 1 dimensions,
imr—mxx—i(|m|2m))(:0 (1)

where m = m(x, t) is a complex valued function and the subscripts x, t denote partial derivatives.

DNLS equation has been widely studied in literature in recent years, in terms of integrability characterization, mathe-
matical properties and solutions. This non-linear dispersive equation arises from the field of physics, more specifically in
plasma physics and non-linear optics. DNLS equation is found to describe the dynamics of finite-amplitude polarized non-
linear Alfvén waves propagating parallel to the magnetic field in cold plasma [1-3] or astrophysical B-plasma [4,5]. More-
over, DNLS is useful to characterize the behaviour of magnetohydrodynamic (MHD) waves in the Hall-MHD approximation
[6] and also for the description of several amplitude-regimes in different plasma scenarios [7-10]. In the context of optics,
DNLS models the propagation of ultra-short pulses in single-mode optical fibers under certain non-linear effects [11-13].

Besides to its physical relevance and applications, DNLS presents numerous remarkable mathematical properties and
analytical solutions of interest. Eq. (1) is an integrable model that may be regarded as a modified version of the famous
non-linear Schrédinger equation (NLS) [14,15] with a derivative-type non-linearity. As NLS equation, DNLS constitutes a non-
linear differential equation of reference in the field of mathematical physics and soliton dynamics. Well-posedness of the
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Cauchy problem for DNLS has been extensively studied in literature and it has been shown that DNLS admits global solutions
for a vast range of initial constraints [16-22]. Regarding its integrability properties, in [23] Kaup and Newell first derived a
Lax pair and propose an inverse scattering transform (IST) for DNLS, obtaining the one-soliton solution under the vanishing
boundary conditions. Besides, it is also proved in this paper that DNLS equation admits algebraic solitons. Several authors
[24,25] explored solutions under the non-vanishing boundary conditions and Kawata el al. [26,27] investigated the one and
two-soliton solution via IST method in this regime. A wide spectrum of mathematical tools, such as the Hirota method
[28,29], Darboux transformations [30-32], Hamiltonian formalism and action-angle variables [33] or affine Lie groups and
symmetry techniques [34,35], have been applied to analyze DNLS equation. In this context, a plethora of exact soliton-like
solutions for DNLS arise: N-soliton solution [28,30,31,36], stationary solutions [37], periodic and quasi-periodic solutions
[30,38-40], breather solutions [24,26,32,41,42], rogue wave solutions [43-45], etc.

There exit diverse integrable generalizations for this equation, such as multi-component generalizations [46,47], exten-
sions to higher dimensions [48], discretized [49,50] or quantized versions of DNLS [51]. Furthermore, Eq. (1) is related
via gauge transformations [29,52] to several notorious integrable equations, for example the Ablowitz-Kaup-Newell-Segur
(AKNS) system [53], or other NLS-like equations with derivative-type non-linearities, as the Chen-Lee-Liu equation [54] or
the Gerdjikov-Ivanov equation [55].

This article is aimed at studying the DNLS equation in 1+ 1 dimensions and its associated linear problem. In
Section 2 the model is presented and its integrability is explored by means of the Painlevé analysis [56]. Since Painlevé
test cannot be implemented over DNLS, a previous change of variables and a Miura transformation are required to trans-
form the starting DNLS equation into a suitable system that may have the Painlevé property. Besides DNLS, another two
partial differential equations (PDEs) of interest arise naturally through this procedure. In Section 3 we shall successfully ap-
ply the singular manifold method in order to derive the singular manifold equations and obtain two equivalent Lax pairs
for each equation under study. It is worthwhile to remark that this procedure allows us to recover the Lax pair for DNLS
proposed by Kaup and Newell [23]. Binary Darboux transformations and the r-function formalism is used in Section 4 to
analyze rational soliton-like solution of DNLS in Section 5. Another different approach for DNLS is conducted in Sections 6-
8, where classical Lie symmetries, its associated Lie algebra and the similarity reductions are identified and deeply studied.
Finally, we close with a section of conclusions. Appendices are introduced at the end of the paper in order to clarify and
extend some results concerning the spectral problems of the PDEs involved.

2. Painlevé test for DNLS: Miura transformations

The derivative non-linear Schrédinger equation can be written as the Kaup-Newell system [23]

imy — myx —i[(m-m)m], =0 @)

— i — Mg+ i[(m-m)m], =0

where m =m(x, t) is the complex conjugate of m = m(x,t).
The Painlevé test is unable to check the integrability of (2) because the leading index is not integer. Actually, it is easy

to see that the leading index is —1/2. This fact allows us to introduce two new real fields «(x,t), S(x,t) such that

m = /2aye:f
il =/ 2ace" 1P (3)

The introduction of (3) in the Eq. (2) yields

[o4
ﬂ:73a+/—’dx (4)
Qx
where « satisfy a differential equation that can be written in conservative form as
al +al
[oF —ac], = |:ozx,‘,(+01)f—M (5)
ox M

Notice that |m|2 =m - = 2y is the density of probability and therefore, @y is the physically relevant field.
From the point of view of the Painlevé property [56], the Painlevé test [57] can be applied to (5) due to the fact that the
leading terms for oy and «; are
- Px e
ox ~+i—, o ~+i— (6)
) ¢ 3
where ¢(x,t) is the singular manifold. Nevertheless, the existence of two Painlevé branches is an inconvenient when the
singular manifold method is applied [58]. The restriction to just one of the two possible signs means that we are loosing
a lot of information about Eq. (5). According to several previous papers [57,59], the best method to deal with this problem
requires the splitting of the field « as

a=i(u—1u) (7)
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and according to (5)

oF — 0 = U+ T ()
The combination of (7) and (8) implies the Miura transformations [58]
1, .
o= 5 (o — e — iovwx) (%)
i :1(012—0( + i) (9b)
XX 2 X t XX

as well as a coupling condition between the field u and its complex conjugate u, which can be obtained by direct substitu-
tion of (7) in (8). The result is

ity 4 Uyy — iy + Uy + (Ux — Ux)> =0 (10)
The derivation of Eq. (9) with respect to t, yields
1 5 af+ad i
Uy = = | o oy — ——— ) — —a 11a
xt 2( xxx + Oy o 2 xt ( )
_ 1 o +ad i
T = E(am+0!3 ) | Lo (11b)

where Eq. (5) has been used to perform an integration in x.

In order to get the equation to be satisfied by u(x,t), we can use (9a) and (11a) to obtain

= 0 — Oy — Uy
o +od .
O = —0 + ———2 ity + Uiy
Ay

Uy
piT

Therefore, the compatibility condition (@), = (¢xx), yields the following non-linear partial differential equation for the
field u(x,t)

Oy = i(u,(,( —af) +

(U + itixe) (12)

xx

2 2
|:u,[+umx+2u§x—u’“:J:| =0 (13)
.

Following exactly the same path with Egs. (9b) and (11b), we can easily prove that U(x, t) should satisfy the same Eq. (13). To
summarize, U(x, t) and U(x, t) are both solutions of the same PDE (13) which are also related by the Backlund transformation
(10).

Eq. (13) is known as the non-local Boussinesq equation [60,61] and its connection to the Kaup system has been exten-
sively studied in [58] from the point of view of the singular manifold method. We are going to use in the next section some
of the results of reference [58].

3. The singular manifold method for DNLS

The advantage of Eq. (13) is that besides having the Painlevé property, it also has just one Painlevé branch [58]. This
fact allows us to easily perform the singular manifold method in order to derive many of the properties associated to a
non-linear partial differential equation. A list of these properties can be summarized as:

« The singular manifold equations

o The Lax pair and its eigenfunctions

« Darboux transformations of the Lax pair

« t-functions

o Iterative method for the construction of solutions

3.1. Singular manifold method

As it has been proved in [58], the singular manifold method requires the truncation of the Painlevé expansion for u to
the constant level (14), which means that the solutions for u have to be truncated as

ull = In(g) + ul® (14)

This truncation acquires the form of an auto-Bicklund transformation between two solutions ul® and ul!! of the same

Eq. (13). Besides that, the manifold ¢ (x,t) is not longer an arbitrary function. There are equations (the singular manifold

equations) to be satisfied for ¢, which can be obtained by direct substitution of (14) in (13). The result read as follows (see
[58]):
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« Expression of the field in terms of the singular manifold

uld! = 7% [+ r+20)7% (15a)
W = 2[4 20— v — (0 + (4 2002)] (15b)

where X is an arbitrary constant and v and r are functions related to the singular manifold through the following defini-
tions

v % (16a)
e % (16b)

Singular manifold equations
The equations to be satisfied by the singular manifold could be written as the system

v 3r?
= (711, +o +4)Lr>x (17a)
Ve = (Ix+10), (17b)

where Eq. (17b) is trivially obtained from the compatibility condition (¢xx)r = (¢¢)xx. Which arises from the definitions
(16a) and (16b).

It is relevant to remark that the singular manifold equations are easily related to the Kaup system [62]. Actually, we can
write system (17) as

Vo= N+ 2Y Vx (18a)
e = Ve + 2V Nx (18b)
through the following change of variables
Yy =r+hi
¥ (r+21)°
e =Vx = 5 — ————
2 2

This is an important point. If the singular manifold equations can be considered as the intrinsic canonical form of a PDE,
we can conclude that our original derivative non-linear Schrédinger Eq. (2) is nothing but a different form of the Kaup
system via Miura transformation.

3.2. Lax pair
o Lax pair for u(x,t)

As it was proved in [58], the singular manifold equations (17) can be used to introduce two different functions
¥ (x.t), x (x.t) defined as

_ % N % (19a)
r:i(%—%)—zk (19b)

where the term —2X in (19b) is not essential, but it is useful to simplify the results.
These definitions allow us to linearize Eq. (15). Substitution of (19) in the expressions (15) yields

o, Vx Xx
uld)  Yx X g (20a)

XX ,‘I/ X

Uk Ax o,
— A I 293 ) =0 (20Db)
X VX )
These equations can easily combined in order to obtain
[0] _ 01
Uy — iU .
Ve = (7”“2 s —u\) Y — Uy (21a)
uXX
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(0]

[0 4

Uspy + iU .

X = (% + :x) X — il (21b)
o

Besides that, the singular manifold equations (17) provide

ﬂ+ﬁ—i(@—X—“)Jrzx(ﬂJr&):o
voox

voox vooox
(Ve xe Vx| S o Ux Xx 0] 2
| == )+ o+ 5= )42 — 2 ) +4u +24° =0
( voox VX voox =
The combination of these two last equations allows us to write
Ve = iw,X—ZMIJX+i(2uL2] +A2)1// (22a)
Xo =~ — 20— i(ZuL‘;‘ +/\2)x (22b)

Egs. (21) and (22) are a Lax pair for Eq. (13). Notice that the two eigenfuntions are also related by (20a). Definitions
(19) can be easily combined with (16) to provide the singular manifold through the exact derivative

dop =Y ydx + =229 x +i(x Y — ¥ xoldt (23)
whose integration allows us to obtain the iterated solution (14). Obviously, the complex conjugate form of (21) and
(22) is the Lax pair for Hlo](x. ).

Lax pair for a(x,t)
We can now use our previous results to derive a Lax pair for the field «(x,t). Combination of (7) and the Painlevé
expansion (14) gives a Painlevé expansion for « of the form

g —gT) = 01 4 4 <2> 24
a l(u u ) % +iln s (24)

where J and ¥ should be introduced as the complex conjugates of ¥ and x in order to have the complex conjugate of
(23). Besides that, the coupling condition (10) should be fulfilled for ul® and . 1t imposes an additional condition for
the singular manifold ¢ (x, t) and its complex conjugate ¢ (x, t) that can be written as

P (Zx i) 4 &(ﬁ —ia 71)\) -1 (25)
AW ¢\ X
A Lax pair for @l% can be easily obtained from (21b) and (22b) with the aid of (9) and (11). The result is
2 2
ol 1 (o)’ - 0 ol - (o9

20 3

Xow =1 +A | xx+ X

2
Xe = —ixm — 20 )+ iI:Ot[[D] - (oz)l(ol) +iald — AZ]X (26)

An alternative Lax pair can be obtained by substitution of (9) and (11) in (21a) and (22a). We omit here its explicit
expression, because the Lax pair in terms of ¥ can be easily obtained by using (20a) in (26). We may refer the reader
to the Appendix A.2 for the complete expression this alternative Lax pair.

Lax pair for m(x, t)

Finally, from Egs. (3) and (4), we can obtain the derivatives of @ as

(0153101
ol = ml%m

3 2, _qop2 i — —
ol = 2 (m®) (m9)* + i(mlolmLOI ,mw]m[XO]) 27)

which allows us to write the Lax pair (26) for the initial system (2) as
mlol! |:m[0]m[01 0 ]X

[ oo m
X = 1| mim —lm+k It = T+lﬁ
(o101 0]
Yo = i — 20K+ i[mlolmwl (% + iT[XO]> - AZ:|X (28)
m

Analogously, an alternative Lax pair for m(x, t) may be found in Appendix A.1.

5
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4. Darboux transformations
As it has been shown in many previous articles [57-59,63-66], once the Lax pair have been obtained for a given PDE by

means of the singular manifold method, a binary Darboux transformation can be constructed. The method can be described
as follows:

4.1. Seed eigenfuctions

Let be x;, i = 1,2 two different eigenfunctions of the Lax pairs (21b)-(22b) for the seed field ul®, corresponding to two
different eigenvalues A;, i = 1, 2. Therefore, we have
[0 , ;[0
Uyyy + UL .
O = (% m,) O =l i (299)
U5y
(e = =i00 = 22400 = (208 +22) (29b)
Furthermore, two different eigenfunctions v;, i = 1,2 can be introduced by means of (20a) in the form
o1, (s Qdx
)y W0 0x_ o (30)
XX Vi X
which means that we can introduce two different singular manifolds ¢;, i = 1,2 defined in (23) through the expression
depi = Yy i dx + (=200 xi + 10X (Yi)x — Wi (X1}t (31)

4.2. Iterated eigenfunctions

As we have seen in the previous section, the truncated Painlevé expansion (14) can be considered as an auto-Backlund
transformation
ulll = In(¢hy) +ul® (32)

which allows us to obtain an iterated field ul'l. Obviously an iterated Lax pair can be defined for this iterated field in the
form

[, .01l
12)w = (u‘“z;r% + i)»z) Gn2)x—uld On2) (33a)
(12)e = =i~ 22 = i( 20 +23) Gr) (33b)
J Wna)x (X12)x _ 0 (330)

b Via X2

and consequently, a singular manifold ¢ 5 can be defined for the iterated field though the expression
A1z = V12 120X+ {=202W15 12 + il X12 (W12)x = Y12 (X12)x]}dE (34)

4.3. Second iteration

The singular manifold ¢ 5, as defined in (34), can be used to perform a second iteration such that a new field ul?! can
be constructed as

ul? = In(¢y ) +ul!) (35)

A Lax pair is usually considered a system of equations which is linear in the eigenfuctions. A different point of view [57,58],
is the consideration of the Eq. (33) as non-linear relations between the field ul'l and the eigenfunction xi ,. According to
this new consideration, the Painlevé expansion (32) for the field should be accompanied by a similar expansion for the
eigenfunctions. Let be

Xi2= X2 1 —A(Az (36a)
by
Y12 =121 —¢” (36b)
1
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such expansion. A, and X;, are functions to be determined later. Besides that, (34) implies that we can also provide a
Painlevé expansion for the singular manifold in the form

Q
bra=dr+—12 37
2
Substitution of (32), (36) and (37) in (33) and (34) requires a lot of calculation, which is not difficult to handle with the
symbolic package Maple. The final results read as

Tip=07s (38a)
Qi =—-A12021 (38b)
Ay =i xi5) = %00

()‘f - )‘j) (Xi)x

Therefore, we can conclude that (32) and (36) are binary Darboux transformations for the Lax pair (33). The eigenfunc-
tions y; and V; for the seminal solution ul® are the only tools which we need in order to construct the iterated solution
(32).

(38¢)

44. t-function

By combining (32) and (35), we can get the second iterated solution as
ul?l = In(¢1 1 ) +ul® (39)
By using (37) and (38b), (39) can be written as

ul? = In (717) + ul®
Ti2 = ¢1h2 — D122 (40)

This procedure may be implemented repeatedly and generalized up to the nth-iteration, which read as

ulh = In(¢11 2+ 1 2 (41)
The t-function for the nth-iteration can be computed as
Tig.a=det(Ag),,  Lj=T,...n (42)
where (A, j), denotes the n x n matrix of entries
Aii= i for i=j
{a =i e for 12 “

that may be exclusively expressed in terms of n different couples of eigenfunctions {y,.¥,} of eigenvalues A, for the
seminal Lax pairs (29) and n singular manifolds ¢, given by (31), k=1,...,n.

5. Rational solitons

In this section, rational soliton-like solutions for the DNLS equation are obtained by applying the procedure described
above. The density of probability for the DNLS equations, the relevant physical field associated to the formation of solitons,
may be expressed as

|m|? = m -7 = 2i(uy — Ty) (44)
We will start with a seed solution ull and a couple of eigenfunctions for its Lax pair {xj, ¥} J=1,2 that allow us to
construct the first and the second iteration, ul'l and ul?l, the A matrix and r-function, which will lead straightforward to

the soliton solution profile.
Let us consider the following seed solution for (2),

,
i o]

m% = joe (45)
where jg, zg are arbitrary constants. This seed solution leads to a polynomial solution in u and u for (13) as
P2 s s s
ulo = R [Jezpx(5 + i@+ Do) +i(x+ iz + 1)) (46)
—] 2T . . o
i = B[Rax(3+ 3@+ Do) —i(x+ 3z + 1))

7
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Fig. 1. One rational soliton solutions mﬁ,” at times t = —75, 0. 75. The solid blue line represents a dark soliton for 0 = 1. jo=1. 20 = é and the dashed

red line displays a bright soliton for 0 = -1, jo=1.20 = %. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

where condition (10) is identically satisfied.
Solutions for the Lax pair (21) and (22) may be constructed as
yo —e § 3200 [x+jg (72"%12‘,}+7z§+1)+3(z§+1))t]

47
" _ efélng,a [ng(f;Ta zg+7zg+1)+3(z§+l))[} (47)

where these eigenfunctions depend on an additional binary real parameter o, such that o2 = 1. The spectral parameter
associated to these eigenfunctions is written as

i2
Ao = %0(2020 —-@+1) (48)

By means of Eq. (31), we get the singular manifold, which also depends on o,

i

=x—j3(ozg— @B+ D)t — 57— — (49)
¢a 8oz 0 ) Jj3z0(0 —29)
5.1. First iteration and one-soliton solution
Then, it is possible to compute the first iteration through (32),
11 J8 22 (X L 2(52 : oo 1 1 2 2 i
! =253 Ox(i +Jb(z+ l)t) +I(X+jo(20+ 2)r) +In(x—j(oz0— (2 +1))t - T~
- 75[12&((5 + (@ + 1)) —i(x+ (e + l)r)] +in(x= B0z — (B +1)+ ot ) (50)
o 2 [Jo70X\5 T ol@ o\#+ 3 0 0 2200 —20)

where we can check that uE,” and ﬁ!,” are complex conjugates.
Hence, the density of probability for the first iteration is deduced from (44) as

min [ 1m591\14lm(<%>x) - 3- : (s1)

i2 2 1
Jgzo(o *Zo)[(X* Ugl)” + W]

which corresponds to a travelling rational soliton-like wave along the x — vst direction, of speed

Vo = j§(0z0 - (Z5 + 1)) (52)
and constant amplitude
o = —j§(420(0 —20) = 1) (53)

One may observe that depending on the values of the parameters o = +1 and zj is possible to obtain either bright or dark

rational solitons. 5

These one soliton solutions m{,” are displayed in Fig. 1 at different times, where a bright rational soliton is obtained

for 0 = —1 and a dark one for o =1
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5.2. Second iteration and two-soliton solution

In order to perform the second iteration and obtain the two-soliton solution, we need to compute two different sets
of eigenfunctions {x;, 1/} with eigenvalues %; that lead to the singular manifolds ¢;, with j=1,2. Thus, in the follow-
ing, we will identify the first set of functions {x1, V1, A1, ¢1} as those with o =1 in Eqgs. (47)-(49); and the second set,
{x2. V2, ko, ¢}, with o = —1, respectively.

After this identification, it is immediate to obtain the A matrix and the t-function through Egs. (38c) and (40), of final
expressions

Aip = — - eiBaleaB @G A, o L elinlaEae] (54)
’ Jj2zo T
§ 2 . 2ij2(x+ 2z +2)t) -1
Tia= (X + 3@ +1)0) - iz + W (55)
Jozg—1)
Therefore, the second iteration for u and u is given by (40)
2] Jo[ 2 (X | 20 : ofa2, 1
ul? = 71[Jozox(§ + i3z + l)t) +I(X+jo(20+ 2)t)]
2i2(x+j2(z2 +2)t) -1
+In (x+j%(z§+l)t)z—jﬁzﬁter—O( _40(20 )9
sz -1)
- jar. ; . § 1
i = Bian(3+ 3@+ 1)) ~i(x+ (B 4 5)0)]
202 2420 2ijg(x+j%(zg+2)t)+l
+In | (x+j3(z+ 1)) — gz’ - ——— (56)
gz -1)
and |m[2]|2 acquires the final form
2
8 (x+ 38(z8 +2) )" +i8(E - 1) € + 5
|l = [ml®) 74Im((:_1'2)") . (x5 +2)0)" + (5 1) G- (57
1.2 . . 2 . 4(x+j2(2+2)¢
- 1)[((x+15(zé+ o)’ - 8830 - iy ) + A ]

5.3. Asymptotic behaviour

This solution asymptotically yields two rational solitons moving along the lines x — vyt of the form (51), with speed
(52) for o = +1, respectively. In order to enlighten this point, the asymptotic behaviour for each rational soliton may be
performed. Let us consider the following transformation

Xi=x-wnt, vi=-j(z-2+1) (58)

. P 2 . . .
that allow us to write the limit of ‘mlz]] at t — oo as the static rational soliton

|ml? ~ 3+ 4 (59)
RRz0(z0— D[X2 + 7zt |
which correspond to the first iteration solution (51) for o = 1.
A complete analogous analysis can be consider for the second soliton, by means of the transformation
Xa = X — Vst vy = —j§(Z +20+1)
mIf ~ 2+ 4 (60)

i2 2 1
Jozo(z0 + 1)|iX2 + J.SZ%[ZUH)Z]
that leads to a similar profile for (51) with o0 = —1.

Fig. 2 displays the two-soliton solution |rn[2]|2 at different times. In Fig. 3, a spatio-temporal plot of the two-soliton
solution is also presented. Both Figs. 2 and 3 have been plotted in the center-of-mass reference frame of the two colliding
rational solitons, which may be achieved after the galilean transformation x = Xcy + %(ul + Uy)t. In this system of reference,
the two rational solitons move with equal and opposite velocities ¢ = %(V] — 1) along the lines X¢y — oct. In these graphics,
the scattering between the bright and the dark rational solitons is explicitly appreciated. It is worthwhile to emphasize the
unperturbed asymptotic behaviour of both solitons.
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Fig. 2. Two rational soliton solution |m[71‘Z at times t = 250, 0, 250, for jo=1.20 = }.

Fig. 3. Spatio-temporal plot of the two rational soliton solution ‘m[21|2 for parameters jo=1.20 = ¢.

6. Classical Lie symmetries

This section is devoted to the Lie symmetry analysis. Instead of the Lie symmetries for the equation, we are dealing with
the corresponding ones for all Lax pairs given above, Lax pairs (21) and (22) for u, Lax pair (26) for @ and Lax pair (28) for
m, together with the correspondent alternative Lax pairs for v/, written in Appendix A, respectively. Theoretical background
about the classical Lie’s method to compute Lie symmetries may be found in the textbooks [67-70].

In order to compute correctly the Lie symmetries, it is necessary to consider both x-Lax pairs and v/-Lax pair, together
with the {y, ¥}-coupling condition (20a), and their complex conjugates. With the purpose of illustrating a general frame-
work of Lie’s method, valid for each case under consideration, let us define a generic field 2 = Q(x,t) that may act as
{m, @, u} and its complex conjugate Q(x, t) = {M, «, U}, since « is real.

Thus, we will be dealing with a system of 10 PDEs (5 PDEs and their complex conjugates), linear and decoupled in the
eigenfunctions but non-linear in the fields {©2, 2}, with the exception of the {x, v/ }-coupling condition.

Let us consider a one-parameter Lie group of infinitesimal transformations of the independent variables {x,t}, one de-
pendent field and it complex conjugate {Q.ﬁ}, the spectral parameter %, and the eigenfunctions {x,Y. \//.E}, given by

10
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X =X+ eEXLAQQQ TV Y)

Po=t4+e&( Q0 00U, W)

o=k eH QLT V)

Q =Q+engXxt, A Q2 Q x, ¥, V)

Q =Q+engt Q. V. V) (61)

i =X ren LA Q KV Y)

i *X+€I7x(Xf)\Q§X7«"/ﬁ£)

Voo=Y+eny (L QQQ T YY)

Vo=V enp( LA Q X YY)
where € is the group parameter. The associated vector field that generates the aforementioned infinitesimal transformation
reads as

X= Ex% +§z% +EA% + rm% + '75% + ’7)(% + ';7% + w% + nw% (62)

This infinitesimal transformation induces a well known one in the derivatives of the fields and it must preserve the
invariance of the starting system of PDEs. By applying Lie’s method [67,68,70], this procedure yields an overdetermined
system of PDEs for the infinitesimals called the determining equations, whose solutions provide the classical symmetries.
Lie symmetries have been independently computed with the help of Maple, Mathematica and Reduce. The main results are
listed, for each case, in the following lines.

6.1. Lie symmetries for DNLS

Classical Lie symmetries for the Lax pair (28), its alternative Lax pair (A.1b) and its complex conjugates are

Ex(xt/\mmxxxlfll/) Ax+ Ay
E(x 6 A m T, X, T, l//) 2A1t +As
S(xthmim X, V) = -Ark
r;m(x, [N R ) (—7 +IZ1(f))
= Ay =
nﬁ(x,t.)\,m.m,x,x 1//,1//) = (—7 —lzl(f))m
My (%t m L X X U) = Ko () x
ny(x, A MY Y) =KX
Ny (Xt A, m T, XX 1//) K() Y
”w(" a7V ) = Ko () Y (63)
where A;, i=1,..., 3 are arbitrary constants and Z; (t) is a real arbitrary function. K;(%), K;(%), i = 1,2 are complex conju-

gate arbitrary functions of A that represent a phase shift in the eigenfunctions.

6.2. Lie symmetries for the modulus equation

It may be noticed that in this case « represents a real field. Hence, Lie symmetries for Lax pairs (26) and (A.2b), and

their conjugates, read as

(vt o . 0. 0) =Ax+hA
E[(x, NN 1//%) = 2A1t +As
,\(x,r,/\.a(,x.y. 1//%) =—A X

na(x‘ LA X 1//.@) =B

Ny (et h e X 0 ) =K x

(et e . 0 ) =K T

My (%62 0, T UL W) = K () W
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ﬂy(xv (NS ‘/JW) =KmMv
(64)
where A;, Bj, i=1,...,3; j =1 are real arbitrary constants and K;(%), Ki(A), i=1,2 are complex arbitrary functions of A.
6.3. Lie symmetries for the decoupled u equation

Lie symmetries for the Lax pair (21) and (22) and their conjugates have been computed. In this case, we also need to
take into account the coupling condition (10) for u and u in the symmetry analysis. Thus, Lie symmetries for this case are
given by

(ot A uT XX, w.ﬁ) = AIX 4 2A4t + Ay

E(X LA WU XX VL) = 2410 +As

Sk(x, [ RTRTS WE) = A A+Ag

N AW X T ) = (Bz + m%)x+22(t)+i33

na(% 6w T, X, X WE) = (Bz - "‘47“)“22([) —iBs3

My (Xt w0 W) = (<2iAath +Ki () X

7]7()(, [(WRATS NS x//.?) - (2iA4t)~ +E1()~))Y

My (X 6 AW T 2, TV ) = QiAgth+ K (M) ¥

(% 6 W T X T U W) = (<2iAth + Ko (1) (65)

where we have used the same notation convention as before.

It is worth stressing the presence of a complete new symmetry associated to A4, induced by the Miura transformation
applied over «, (7).

In summary, classical Lie symmetries have been obtained for the three system considered above. These symmetries de-
pend on a set of arbitrary parameters, listed as,

« The symmetries associated to the transformations of the independent variables {x,t, A} are expressed in terms of up to
four real arbitrary constants Aj, j=1,..., 4. Then, up to three additional real arbitrary constant Bj, j=1,...,3 may arise
as symmetries for the fields, depending on each case.

« Two real arbitrary functions Z;(t), j = 1,2, which depend on the coordinate t.

* Two complex arbitrary functions, Kj()u).fj()»)A j=1,2, appear in the transformations of the eigenfunctions of the Lax
pairs.

Lie symmetries for Lax pairs generalize and include all the correspondent Lie symmetries for the starting non-linear
PDEs.

7. Commutation relations and Lie algebra

In the ensuing sections, we will only consider the DNLS Eq. (2) and its Lax pairs (28) and (A.1b) for further analysis.
Hereafter, we will study the commutation relations among the infinitesimal generators and Lie algebra associated to the Lie
symmetries for the Lax pairs for DNLS, displayed in Section 6.1.

The eight resulting infinitesimal generators associated to these symmetries may be listed as

] ] a m 9 m 9
X=Xt 2 A — = — — = =
VST R T T 2 2 om

)
X =5
9
=g

. ]
Yiziey = 1Z1(t)(m Im

LD
Flaan = K& x g
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Table 1
Original variables New reduced variables
Independent variables  x,t, A zZ. A
Fields m(x,t), m(x, t) M(2), M(2)
Eigenfunctions XX 6A), X (X6, A) Dz, A), D(z.A)
Yt A, Yt k) Wz A), Wz A)
= .0
- Ki()X =
(k) 1A% 7%
9
Moy = OV g7
o _ 9
Y =Ky = 66
frainy = 2O 5 (66)

where generator X; —Xj3 arise exclusively from the arbitrary constants in the symmetries, Y{z, () depends on an arbi-
trary function of time and F(/J’(m) =« (%) pd, denotes the generic generator associated to the arbitrary functions x (i) =
{K;(0), K;00}, j=1.2, and p = {x. 7. V. V).

According to [69], symmetry generators depending on arbitrary constants will give rise to a Lie algebra, while generator
depending on arbitrary functions will not, since we are dealing with an infinite-dimensional basis of generators. Notwith-

standing this, the commutator of two symmetry generators is still a generator of a symmetry, written in terms of the
involved arbitrary functions.

The commutation relations among these operators are presented in the following table

Xi Xy X3 Yz o Tlon
_ — 7
X [) Y2 Wouy Ty
X2 X2 0 0 0 0
X 2X 0 0 Yo, 0
1%
Yiz.0) _YIZ‘ @) 0 0 0
» 0
Than  Tlawy © 0 0

: : P : P P
Notice that the generic generator WF(K(A)) defined above satisfy that [F(xm)* FW}\))] =0.

I:F(PK(A”, Fﬁ?(m] =0 for any combination of the arbitrary functions « (1), (%) and the eigenfunctions p, p. As men-
tioned, it may be observed that every commutator of two infinitesimal generators provides a non-trivial result, due to the
presence of the arbitrary functions [68].

In general terms, these infinitesimal generators do not form a Lie algebra, but it is possible to obtain a finite-dimensional
Lie algebra by adopting special values for the arbitrary functions, [71,72].

In order to illustrate this, we study and classify the Lie algebra associated to simplest the ansatz Z;(t) = By constant,
Ki (k) = Ky(1) = 0. Thus, the following non-trivial commutation relations arise

[X1. X2] = =Xz, [X1,X3] = —2X3 (67)

which may be identify as the four-dimensional real Lie algebra s3 1 @ nqq, with a = % [73].
8. Similarity reductions

Similarity reductions may be computed by solving the characteristic system

dx _dt _dh _dm _dm _dyx _dxy _dy _dy

& & & m Mwm Nx x My Ny (68

The notation used for the reduced variables, reduced fields and reduced eigenfunctions is displayed in Table 1.

The symmetries that will yield non-trivial reductions are those present in the transformations of the independent vari-
ables, i.e., the ones related to the arbitrary constants A;, i =1,...,3. The rest of the symmetries will provide trivial reduc-
tions. Several reductions may emerge for different values of these constants, raising three independent reductions.

Without loss of generality and for the sake of simplicity, we may consider all the arbitrary functions Kj(%), R,‘(A) ji=12
to be zero, since the associated symmetries are phase shifts over the eigenfunctions that are trivially satisfied due to the

13
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linearity of the Lax pairs. On the contrary, arbitrary functions depending on ¢, Z;(t), j=1,2 do need to be taken into

consideration.
Similarity reductions for the alternative spectral problem (A.1b) are displayed in Appendix B.

81 Aj #£0

By solving the characteristic system (68) in the general case, the following results have been obtained

Reduced variable and reduced spectral parameter

Aix+ Ay A
= A = —=+/As +2A;t 69
z VA1 A3z + 2A1t VA1 e )

Reduced fields

Al eif‘%dt
mx,t) = M(z) ——«—— (70)
(A3 +2A10)%
Ak i Akt
mx, ) = M(z) ————— (70)
(A3 +2A1t)3
« Reduced eigenfunctions
XX 1) =®@z A), T LA =D A) (71)
Y h) =Wz A), YA =z A) (71)
(71)
« Reduced spectral problems
@, — (iA+iMm+ %)d)z—j—l(Mzﬁz+21Mﬂz)¢:O (72)
—  IM; i 1 —
Adp — (MM==C8+2= A |, — | 5 MPM = S MM, —iA? & =0 (72)

and its complex conjugate.

The alternative reduced W-Lax pair can be found in Appendix B, Eq. (B.1).

Reduced equation

The compatibility condition between both Lax pairs (72) and (B.1) and their complex conjugate provide the reduced
equation (and its complex conjugate), which may be integrated as

iMs, M, —
[7 —(Z+2MM)W—MMZL:O (73)

82. A1 =0, Ay #0, A3 £0

By applying the same procedure, integrating (68), we get

« Reduced variable and reduced spectral parameter

M, A _M
zfAfa(x—Af;t) AfAz)\ (74)

¢ Reduced fields

mx,t) = \/%eﬁfz‘“”‘/\/t(z)

m Ay L[z 0d 1

mx,t) = /Te 5 M@ N
3

« Reduced eigenfunctions

x(xt,h) =d@zA), Yxtr) =d@zA)

Yt h) =Wz A), Txtr) =U(zA) (76)

14
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« Reduced spectral problems

o 1 e
cbzzf(1A+1MM+%)¢Z—Z(MZMZ+21MMZ)CD:O

(1 —A+Mﬂ—i%)¢z+(%Mzﬂer%Mﬂz—iAz)(b:0 77)

and its complex conjugate.
The alternative reduced W-Lax pair is displayed in Appendix B, Eq. (B.2).
« Reduced equations
The compatibility condition between both Lax pairs (77) and (B.2) and their complex conjugate provide the reduced
equation

iMz oM
[7 - (1+2mm) 2 7MMZ} =0 (78)

z
83. A1 =0, Ay =0, A3 £0

By integrating the characteristic system (68), the following results are obtained
« Reduced variable and reduced spectral parameter
Z=X, A=x (79)
 Reduced fields

G

m(x,t) :et M(z)

mx,t) = e % /2O T (80)
« Reduced eigenfunctions
K62 =Dz A),  FTxtA) =Dz A)
YA =V A), YA =UEA) (81)
« Reduced spectral problems
. g 1 — Jp—
a — (i + MM + %)@ - 1 (427 1 20038) 0 < 0
-— M . 1. ,— ) —
(7A+MM71WZ)¢17(zAthMZMCEMMZ)cbzo (82)

and its complex conjugate.

The alternative reduced W-Lax pair is written in Appendix B, Eq. (B.3).
« Reduced equations

Finally, the reduce equation reads

['MJ —ZMMZ—MHZ:I —0 (83)
M z

©

Conclusions

In this paper we have analyzed some aspects of the integrability of the well-known derivative non-linear Schrodinger
equation in 1+ 1 dimensions. This equation is presented as an integrable generalization of the famous non-linear
Schrodinger equation (NLS) with derivative-type non-linearity and it constitutes a differential equation of reference in the
area of mathematical physics and soliton dynamics.

The Painlevé test has been proved to be a powerful technique to identify the integrability of this model, in combination
with the application of a Miura transformation. The crucial aspect of our formulation lies in the Miura transformation, which
allows us to connect the three differential equations and transform the original DNLS into a suitable PDE in u where the
Painlevé test with an unique branch of expansion is applicable.

We have been able to successfully apply the singular manifold method in order to obtain two equivalent Lax pairs (up
to a coupling constraint between the eigenfunctions involved) for three PDEs of interest derived from this procedure: the
starting DNLS, a conservative PDE for the modulus @ and a non-local Boussinesq-like equation for u.

Binary Darboux transformations are straightforward implemented, and easily yield the t-function and an iterative
method to construct solutions. Rational soliton solutions have been obtained and their dynamics have been widely ana-
lyzed.
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We have determined the classical Lie symmetries for all these PDEs of interest and their Lax pairs. The main advantage
of performing this procedure directly over the spectral problem is that it allows us to get simultaneously the symmetries
related to the independent variables, fields and those associated to the eigenfunctions and the spectral parameter. Hence,
Lie symmetries of the associated linear problem provide us more valuable information than the single analysis over the PDE
itself. Three different set of symmetries have been obtained depending on up to seven arbitrary constant and five arbitrary
functions of the independent variables t or A.

The commutation relations among the associated generators have been studied and the Lie algebra has been identified
for a particular choice of the arbitrary functions. Finally, we have analyzed three non-trivial similarity reductions in 1+ 1
arising from the symmetries associated to the independent variables, where the reduced equations and the reduced spectral
problem have been simultaneously derived.
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Appendix A. Spectral problems in 1+1

In Sections 2 and 3, Lax pairs for the three main equations under study have been successfully derived. In this section
we present the explicit results for the two equivalent Lax pairs (x-Lax pair and the alternative /-Lax pair) associated to
each equation, which can be summarized as follows:
Al. Lax pairs for DNLS equation

From (28) and properly combining Egs. (9), (11) and (27) in (20a), one gets the two equivalent spectral problems for the

original DNLS Eq. (2),

1
Xm:xx[1k+1mm+—]+x[ m?m +2mmxj|

X[:XX[ A+mm—1—]+x|: m’m —%mmx—xk] (Ala)

m m? + - mimy
mm? + 2imx 2

+ 2imy
V/uztjfx[—il imm+ ———% (mm 1m :|

) o l(rnm +21mx i, 1 ,
Ve = Yy| —A+mm+ ——— % 77m i+ = My + ik (A.1b)
mim’ + 2iffy 4 2
Ve 1 _ W)
Ux —me mm+21ﬁ =0 (Aldc)

A2. Lax pairs for a(x,t)

By an analogous procedure, the spectral problems associated to the equation for the modulus «(x,t) (5) read as

B . 02 + Oty + i —02 il + 0t
Xxx*XxI:')v+ 2y }Lx[ 5
i 2 H _ w2
Yo = xx[—)» Pl S ] + X [—ikZ I Sl W‘} (A2a)
20 2

id i 2 02 o2 2
. ioty + 2i0tettx — 20500 — l0F — it 2005, —otg + o, o,
1//xx:wx|:*1)\+ x 2100 x Oxx 3 o 1+ 20! x:|+1/,|: x 10 + r]

20— + it + tt) 2
02 4 20ty + 20200, — 02 — 2, — 2icycr. —itt 4 Qe + T2
RV £ L M p | in? g TR A2b
Vi %|: 20ty (—0 + ot + ) v 2 (2
wax—;eraf—ar—iaxX:O (A2¢)
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A3. Lax pairs for u(x, t)

Regarding Eqgs. (20)-(22), the spectral problems for u may be written as
. Uyxx + iUl
X = Xx[’)L + WZTMM] — U X

_ e U |
Xt = Xx [—A + T} —i[A2 + uw]x (A3a)

Vi = wx[fm + ’““} -

= ;//X[ '“"“ + “*'] T[22 + ]y (A3b)

Y xx
+ U =0
7

(A.3c)

Appendix B. Reduced spectral problems

In the present section we display the explicit computation of the reduced spectral problems W-Lax pairs. These Lax pairs
arise from the similarity reductions performed over the alternative v/-Lax pairs in each case of study in Section 8. The
compatibility condition over the reduced Lax pairs in all cases yields

D, 1 —2
- = 2i =0
37 4M(MM * MZ)

B1. W-Lax pair for Case 8.1

(mmz - m,)
.

v, - 1M(Mﬂz+2zﬂz)\p FN] DNF Yy v UL — Y [
4 MM’ +2iM,
(immz - 2%) : ,
PN V7N N VY v (R S— wz+-(M2M +2iMﬂz—4A2)\IJ:O (B1)
MM 4 2iM, 4
and its complex conjugate.
B2. W-Lax pair for Case 8.2
; , (mmz - m,)
U, - -M(Mﬂ +2Wz)\1/ vilasmtie~—— 2z |, =0
4 M +2iM,
(i/vmz - 2%) ; ,
JNE T ¥y v S S—— \IH—(MZH +2iMﬂ174A2)\U:O (B2)
MM + 2iM, 4

and its complex conjugate.

B3. W-Lax pair for Case 8.3
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(iMHZ - 2%)
:

1 - _ ) _
Vi — M MM2+21MZ)\II+1 A MM+ ~—5 22 |y, =0
MAE + 2iM,
(iMﬂz 72M) . ,
A-MM-~—— /2 \1/,+-(MW +2iMHz—4A2)\ll:0 (B3)
MM +2iM, 4

and its complex conjugate.
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