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P H Y S I C S

Observing separate spin and charge Fermi seas 
in a strongly correlated one-dimensional conductor
Pedro M. T. Vianez1*, Yiqing Jin1, María Moreno2, Ankita S. Anirban1, Anne Anthore3, 
Wooi Kiat Tan1, Jonathan P. Griffiths1, Ian Farrer4, David A. Ritchie1,5, Andrew J. Schofield6, 
Oleksandr Tsyplyatyev7*, Christopher J. B. Ford1*

An electron is usually considered to have only one form of kinetic energy, but could it have more, for its spin and 
charge, by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at 
low energies by the Tomonaga-Luttinger model, yet little has been observed experimentally beyond this linear 
regime. Here, we report on measurements of many-body modes in 1D gated wires using tunneling spectroscopy. 
We observe two parabolic dispersions, indicative of separate Fermi seas at high energies, associated with spin and 
charge excitations, together with the emergence of two additional 1D “replica” modes that strengthen with de-
creasing wire length. The interaction strength is varied by changing the amount of 1D intersubband screening by 
more than 45%. Our findings not only demonstrate the existence of spin-charge separation in the whole energy 
band outside the low-energy limit of the Tomonaga-Luttinger model but also set a constraint on the validity of 
the newer nonlinear Tomonaga-Luttinger theory.

INTRODUCTION
Many-body systems cannot be explained by studying their individ-
ual components, with interactions often giving rise to collective ex-
citations from which an array of previously unknown quasiparticles 
starts to emerge. This is particularly notable in one dimension (1D), 
as here, geometrical confinement alone imposes strong correlations 
in the presence of any interactions, leading to well-known non–Fermi 
liquid phenomena such as spin-charge separation (1). Overall, the 
behavior of 1D interacting gapless systems in the low-energy regime 
is well captured by the Tomonaga-Luttinger model (2–4) and has 
been extensively tested in carbon nanotubes (5–7), semiconductor 
quantum wires (8–10), antiferromagnets (11), and, more recently, 
cold-atom chains (12). The model, which assumes a linearized single-
particle dispersion, is expected to only be valid close to the Fermi 
points, where nonlinearities are still weak. However, pronounced 
consequences of band curvature have also very recently started to 
be explored experimentally (13–15).

At the same time, modeling such systems is a long-standing open 
problem. Simultaneous introduction of the charge and spin degrees 
of freedom into a nonlinear extension of Tomonaga-Luttinger liquid 
(TLL) theory (16) predicted that the spin-charge separation would 
no longer exist beyond the low-energy regime (17, 18), since the 
holons (i.e., charge-type excitations) are made unstable by the non-
linearities. Instead, a mixture of spinons (i.e., spin-type excitations) 
and holons is responsible for the power-law threshold behavior around 
the spectral edges. Extra, higher-order 1D modes, which have the 
spectral edge dispersion shifted and mirrored from that of the main 

1D subband, were predicted in (16) as well. Another theory (19) 
showed that these extra modes should only emerge as the system 
length is reduced. We have observed some signatures of these “rep-
licas” in the past (20, 21), but experimental results beyond the linear 
regime that have both enough resolution and clarity to distinguish 
between predictions have been lacking.

Here, we measure the spectral function for the spin and charge 
excitations well beyond the linear regime using a tunneling spec-
troscopy technique that allows mapping in both energy and mo-
mentum space. In the amplitude of our signal, we find that the two 
branches of the linear TLL modes evolve away from the Fermi points 
into two fully formed nonlinear dispersions. Each dispersion consists 
of purely spin or charge collective modes, identified by comparison 
with the spectra predicted by the 1D Fermi-Hubbard model (22). 
Both dispersions are parabolic in shape but with different masses, 
implying the existence of two Fermi seas of different types. This 
result shows that the spin and charge collective excitations both 
remain stable in the whole conduction band, well beyond the 
low-energy limit of the original Tomonaga-Luttinger model where 
their existence was first established. We are able to tune the degree 
of screening of the Coulomb interaction by changing the confine-
ment in our wires and hence the number of occupied subbands. 
This is accompanied by a variation of approximately 45% of the 
two-body interaction energy and allows us to trace how both Fermi 
seas evolve as the interaction strength is varied. Measuring wires of 
different lengths, we are also able to observe two, with a possible 
third, separate 1D nonlinear “replica” modes of the spinon type that 
systematically emerge as the length decreases.

RESULTS
Characterization of the 1D array
Our experiment consists of a tunneling spectrometer made on a 
GaAs/Al0.33Ga0.67As heterostructure with two parallel quantum wells 
(QWs), grown by molecular beam epitaxy (MBE). We measure the 
tunneling conductance G = dI/dVDC between the 1D wires and the 
2D layer at lattice temperatures T ∼ 300 mK (see Fig. 1A), where I is 
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the tunneling current, while VDC is the DC bias applied between the 
layers. Tunneling occurs when filled states in one system have the 
same energy and momentum as empty states in the other, therefore 
ensuring that both energy and momentum are conserved. To map 
the dispersion of each system, a negative (positive) voltage VDC ap-
plied to the 1D wires provides energy for tunneling from (to) 1D 
states below (above) the Fermi level, while an in-plane magnetic field 
B perpendicular to the wires boosts the momentum, offsetting the 
spectral functions of each system by k = eBd/ħ, where e is the elec-
tronic charge, and d is the separation between the wells. The differen-
tial tunneling conductance G displays resonant peaks corresponding 
to maximal overlap of the offset spectral functions (dispersion rela-
tions). The device therefore behaves as a spectrometer, with the well-
characterized 2D system being used to probe the less well-understood 
spectral function of the 1D system.

We use a surface-gate depletion technique to establish separate 
contacts to each well. Our 1D system consists of an array of ∼400 
highly regular quantum wires formed in the upper layer by using a 
set of wire gates (WGs) fabricated on a Hall bar via standard elec-
tron beam lithography and connected by air bridges (see Fig.  1B 
and inset) (23). Use of an array averages out impurities, length res-
onances, and charging effects as well as increases the overall strength 
of the measured signal. For the shorter devices, the air bridges are 
crucial for ensuring that good uniformity is obtained along the en-
tire length of the wire, which would otherwise become narrower at 
one end if instead all the gates were joined by a continuous metal 
strip. Current is injected into the 1D wires via a small region, 0.45 m 
wide. Unlike the wires, however, this region is 2D in nature, and its 

parasitic signal can be readily distinguished from the 1D signal in 
the measured data since its density is different. We use the uncon-
fined weakly interacting 2D electron gas (2DEG) in the bottom well 
as a well-understood spectrometer. Note that our measurement is 
subject to capacitive effects between the wells, as well as between 
each well and the surface gates, and we take these into account in all 
the curves we plot; see section S1.6.1.

A plot of dG/dVWG versus B and VWG shows U-shaped curves, 
one per 1D subband (Fig. 1C). We start our experiment by choosing 
VWG so that there is just one 1D subband occupied. Figure 2C shows 
an example of such a measurement, with conductance through the 
sample being measured as a function of energy (∝VDC) and mo-
mentum (∝B). Here, the tunneling map can be divided into two 
sectors, particle (for VDC > 0) and hole (for VDC < 0), correspond-
ing, respectively, to electrons tunneling into and out of the wires. 
The 1D Fermi wave vector k1D = ed(B+ − B−)/2ħ is determined from 
the crossing points (B− and B+) along the VDC = 0 line. The electron 
density in the wires is n1D = 2k1D/, which then gives the interaction 
parameter ​​r​ s​​  =  1 / (2 ​a​ B​ ′ ​ ​n​ 1D​​)​, where ​​a​ B​ ′ ​​ is the Bohr radius of con-
duction electrons in GaAs; see section S1.5. The density can be con-
trolled by tuning VWG, reducing it down to n1D ∼ 30 m−1 before 
the wires pinch off.

Observation of two Fermi seas for spin and charge
The curves drawn over the data in Fig. 2C are those expected from 
single-electron tunneling processes. Undesirable yet unavoidable 
“parasitic” tunneling coming from the narrow 2D injection region 
(marked by the black dashed curves; see section S1.6.2) produces a 

Fig. 1. Mapping a 1D system via magnetotunneling spectroscopy. (A) Schematic representation of the 1D-2D spectrometer device. We measure momentum-resolved 
tunneling to and from an array of 1D wires (only one wire shown here for simplicity) and a 2D electron system and map the elementary excitations in each system by 
measuring the tunneling conductance while varying both their energy E ∝ VDC and momentum k ∝ B. Current flows from the source into the wire and tunnels between 
the layers to reach the drain. (B) Scanning electron micrographs of the various surface gates present in our device. See Materials and Methods for details on gate operation 
and how to set up the tunneling regime. Inset: Air-bridge interconnections between surface gates. (C) 1D wire subbands (sb.) participating in the tunneling process. We 
observe from four to one 1D subbands before the wires pinch off.
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background in the form of a set of parabolic dispersions, which can be 
subtracted once separately mapped (with the WGs pinched off). On 
the other hand, blue dashed curves reveal the elementary excitations 
of the 2D lower well, as probed by the 1D wires. The remaining strong 
features, marked by the green and magenta dashed curves, arise from 
the 1D system. We are unable to explain these data well using a single 
parabola (see section S1.6.3 for details), a fact that strongly points in 
the direction of separate spin and charge modes.

To identify whether this is the case, we interpret the 1D tunnel-
ing signal using the dispersion of the 1D Fermi-Hubbard model in 
the semiconductor limit, in which many-body spectra are described 
completely by the Lieb-Wu equations (22). This system of nonlinear 
coupled equations is solved for two types of momentum states, ​​k​j​ c​​ 
(for charge) and ​​k​j​ s​​ (for spin degrees of freedom), which, for the 
ground state, form two filled Fermi seas marked by filled circles of 
two different colors in Fig. 2B (for a detailed discussion of the theo-
retical model, see sections S1.1, S1.2, and S1.3). An excitation, say 

an electron tunneling out of the wire, removes one charge and one 
spin simultaneously to reassemble a free electron, marked by a pair 
of green and magenta empty circles in Fig. 2B. Placing the hole of 
one type at its corresponding Fermi energy and moving the other 
one through the band describes the spectrum of the purely holon or 
purely spinon modes. While the momentum of these collective ex-
citations as a whole is well defined because of the translational in-
variance, with k = kF − Pc or k = kF − Ps, the constituent degrees 
of freedom form nonequidistant distributions of their (quasi-)mo-
menta, which depend, in detail, on the interaction strength and the 
positions of the two holes, owing to the strongly correlated nature of 
the model. Explicit solution of the Lieb-Wu equations for ​​k​j​ c​​ and ​​k​j​ s​​ 
for the two kinds of pure excitations produces the two dispersions 
drawn as the magenta and green solid lines in Fig. 2A. These two 
dispersions constructed out of collective modes for spin and charge 
have a shape close to parabolic and have a simple description in terms 
of two Fermi seas with different masses. This closely matches our 

Fig. 2. Two Fermi seas. (A) Dispersion proposed for an interacting 1D system (gray, continuum of many-body excitations; green lines, spinon modes; magenta lines, 
holon modes; dashed, replicas). (B) Graphical representation of the decomposition of an electron into a spinon and a holon in a tunneling process, along with an illustra-
tion of two distinct Fermi seas (filled dots) describing the pure holon (top) and spinon (bottom) excitations (in units of kF)—see text. (C) Map of the tunneling conductance 
(G) differential dG/dVDC versus DC bias VDC and in-plane magnetic field B, for a 5-m-long device. Superimposed curves mark all possible single-electron tunneling pro-
cesses, together with the resonant dispersions of the spin and charge modes marked by green and magenta dashed lines, respectively. Inset: dG/dB around the +kF point 
at negative biases where both spin (vs) and charge (vc) lines can be seen. (D) dG/dVDC above +kF(~3.3T), where VPG = 0.7 V so that the parasitic signal has moved further to 
the right. We systematically observe no signal from the spinon mode at VDC > 0 in all devices that we measured; see text for discussion. A naïve extension of the spinon 
dispersion, observed in the hole sector, into the particle sector is given by the green dashed line. (E) Ratio of holon-to-spinon masses and spinon-to-holon velocities 
versus interaction parameter rs for devices of different lengths.
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experimental observations, implying the presence of these two Fermi 
seas (see section S1.6) in a real system of interacting electrons.

Around the ±kF points, these curves are almost linear and can be 
characterized by two different slopes vc and vs, parameters of the 
spinful Tomonaga-Luttinger model for the holon and spinon modes, 
respectively. These two velocities are related microscopically to the 
Hubbard interaction parameter U (24, 25), and the spectral function 
predicted by the linear Tomonaga-Luttinger theory displays two 
strong peaks on these two branches (26, 27), which have already 
been measured in semiconductor quantum wires (8, 9). Away from 
the Fermi points, the spectra of holons and spinons extend naturally 
to the nonlinear region, evolving into two separate curves that are 
close to parabolae described by masses mc and ms, respectively. 
These shapes indicate the formation of two separate Fermi seas by 
the nonlinear excitations. Their dispersions cross the Fermi energy 
at two different pairs of Fermi points (±kF and ±3kF) [see a numerical 
simulation of the Fermi-Hubbard model via the dynamical density-
matrix renormalization group method in (28)], since the number of 
holons is twice the number of spinons for the spin-unpolarized wires 
in our experiments, making the densities for the two kinds also dif-
ferent by the same factor. The ratio of their masses depends on U, 
deviating further from the free-particle value mc/(2ms) = 1 with in-
creasing interaction strength.

As we have seen, the dispersion of the strongest features in the 
experimental 1D signal (marked by green and magenta dashed lines 
in Fig. 2C) cannot simply be interpreted using only a single parabola, 
corresponding to a single Fermi sea. This can be further established 
by analyzing the tunneling signal at zero field; see section S1.6.4 for 
details. If, instead of just one, we use two parabolae, corresponding 
to two Fermi seas, such as that predicted by the Fermi-Hubbard model, 
then we can match the experiments well. We observe two modes in 
our data, which match the dispersions of pure excitations of the two 
different kinds depicted in Fig. 2A, where two distinct Fermi seas 
are formed by the nonlinear spinon and holon collective modes out 
of the many-body continuum away from the Fermi points. This re-
sult demonstrates a nonperturbative effect that interactions cause in 
the whole band in 1D, posing a new theoretical challenge of ac-
counting for higher-order processes beyond what has been consid-
ered in the literature so far (29) to describe it.

While we observe two dispersions in the hole sector, only one is 
visible in the particle sector, which we easily associate with the ho-
lon Fermi sea, as its gradient matches that of the charge line in the 
hole sector. At the same time, the spinon dispersion that assumes a 
naïve extension from the hole sector is systematically absent in the 
particle sector for all devices measured; see green dashed line in 
Fig. 2D. This result is, however, compatible with the particle-hole 
asymmetry in relaxation times of hot carriers as reported previously 
in (13). Although spin and charge excitations were not resolved in 
(13), assuming that the spinon branch in the particle sector is unsta-
ble (so that we do not observe it), there would be an accelerated re-
laxation for hot electrons as they eventually split into spinon and 
holons. Note that the spinon Fermi sea alone has already been ob-
served by neutron scattering (probing the dynamic structure factor 
instead of the spectral function that we measure here) in antiferro-
magnetic spin chains realized in insulating materials (30–32) as a 
spectral edge with a nonlinear dispersion separating the multispinon 
continuum from a forbidden region (33, 34). In these experi-
ments, the spectral power of the excitations drops very rapidly to-
ward the particle part of the spinon dispersion, making it therefore 

undetectable. Also note that, in the present experiment, the charges 
are delocalized as well, permitting us to see both Fermi seas at the 
same time.

By tuning the confinement in the wires, we are also able to change 
the number of occupied subbands and their respective densities, 
therefore allowing us to follow the evolution of each Fermi sea as rs 
is changed by a substantial amount. Such statistics collected from a 
range of samples in Fig. 2E show a systematic trend of larger devia-
tions of the observed mc/(2ms) ratio from its noninteracting value 
with increasing rs. The ratio of the Luttinger parameters vs/vc simul-
taneously extracted from the same data (see as an example the inset 
in Fig. 2C) exhibits a very similar dependence on rs.

Further interaction signatures: A hierarchy of 1D 
replica modes
Having now identified two separate Fermi seas for spin and charge 
in our data, we further analyze the 1D dispersion by contrasting it 
with the simulated tunneling conductance map between a noninter-
acting 1D system and a 2DEG (see Fig. 3A). Note how, unlike in 
Fig. 2C, it is possible to fit both particle and hole sectors of the map 
with a single parabola (magenta dashed line). This is because, in the 
absence of interactions, the opposite spin states are degenerate, 
leaving room for only a single Fermi sea. We start by examining the 
region just above B+ (i.e., +kF), where a clear feature not accounted 
for by our noninteracting simulation can be observed; see Fig. 3B. Here, 
the tunneling conductance peak broadens and splits, with one 
boundary following the 1D holon mode while the other branches 
away from it. To isolate it from any potential background contami-
nation, we apply a positive VPG again to move the parasitic resonance 
signatures away from B+. We also observe that this extra feature is 
not visible once the wires are past pinch-off and that it is independent 
of the parasitic tunneling signal.

The mode-hierarchy picture for fermions (19, 20) predicts that 
the continuum of the many-body excitations separates itself into 
levels (i.e., first and higher orders) by their spectral strengths, which 
are proportional to integer powers of R2/L2 (i.e., this parameter to 
the first and higher powers), where R is the length scale related to 
the interaction, and L is the length of the system (see section S1.4 for 
more details). The principal (spin and charge) parabolae have then 
the largest amplitude, while their mirrors with respect to the chem-
ical potential (i.e., VDC = 0) and translations by integer multiples of 
2kF manifest themselves as replicas; see dashed lines on Fig. 2A, 
with amplitudes proportional to higher powers of the small param-
eter R2/L2. We have observed this feature in samples with wire lengths 
ranging from 1 to 18 m, with all devices being mapped at very 
similar densities and Fermi energies, making them otherwise simi-
lar in R. In all of them, the strength of the mode marked by the blue 
dotted line in Fig. 3B, which is a replica of the parabola formed by 
nonlinear spinons, decreases as the B field is increased away from 
the crossing point. However, once the background has been sub-
tracted and G has been normalized by length, one can see qualita-
tively that the decay away from B+ was slower the shorter the 1D 
system, as predicted, with the signal vanishing at higher momenta 
away from +kF.

To test our prediction of length-dependent spin-type replica 
modes further, we have looked at two other sectors of the tunneling 
map; see Fig. 3 (C and D). We initially reported the first mode be-
tween ±kF as an inverted (spinon) shadow band symmetric to the 
1D (spinon) mode in (21). According to the nonlinear theory of 
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TLLs (16, 35), in the main ∣k ∣ < kF region of the hole sector, the 
edge of support (defined as the hole excitation with the smallest 
possible energy for a given momentum) is predicted (17, 36) to co-
incide with the spinon mass shell, whose dispersion ϵs(k) we have 
already observed to be very close to a parabola in our experiment. 
Similarly, in the main region of the particle sector, the edge of sup-
port is also predicted to be given by the inverted spinon mass shell 
−ϵs(k) in Fig. 2A. Consistent with the nonlinear theory, a symmetric 
inverted replica was seen in the particle sector, opposite to the main 
1D subband, in all mapped devices, up to 5 m (see Fig. 3C). This 
feature can also be seen in Fig. 2C. According to the mode-hierarchy 
picture, a length dependence similar to that of Fig. 3B is also expected 
to be observed since this is also a subleading mode. Although such 
dependence is not particularly clear from 1 to 5 m, the replica mode 
was seen to not be present at all for the 18-m wire.

Similarly, another replica mode is also predicted to exist at kF < k < 
3kF, symmetric to the subleading spinon mode shown in Fig. 3B, but 
in the hole sector. For only the shortest 1-m device, a feature consist
ent with this picture is starting to be observed, hinting that a full 

observation of this mode would probably only happen at submicron 
lengths. Nevertheless, as seen in Fig. 3D, both modes evolve in tan-
dem with each other as the 1D channels are squeezed toward pinch-
off. This further establishes that these features are 1D in nature and 
cannot originate from the parasitic injection region. All three replica 
features discussed emerge as the effective length of the 1D system is 
reduced, compatible with the mode-hierarchy picture where a level 
hierarchy emerges controlled by the system’s length. We attribute the 
different lengths at which they become visible in this experiment (the 
first replica only being observed below 5 m, the second below 18 m, 
and the third replica only at 1 m) to different numerical prefactors 
that are still unknown theoretically for spinful systems. Nevertheless, 
the fact that we are observing features compatible with the mode-
hierarchy picture further establishes our technique as being capable 
of detecting interaction effects in the nonlinear regime.

Evolution of the two Fermi seas with interaction strength
Up to now, we have confined our analysis to dispersion maps in the 
single-subband regime. In the current geometry, however, we are 

Fig. 3. A hierarchy of modes. (A) Simulated map of the differential tunneling conductance dG/dB versus VDC and B, between a 1D noninteracting system (magenta) and 
a 2DEG (black). In the absence of interactions, the spinon and holon dispersions are degenerate with each other. (B) dG/dVDC (left) and ​​d​​ 2​ G / d ​V​DC​ 2 ​​ (center), for devices of 
different lengths, as labeled. Right column: G versus VDC at various fields B > B+ for the data in the matching plots to the left; “×” and “+” symbols on each curve indicate 
the position of the fitted dispersions in the particle sector for the holon branch and the first-order replica, respectively (see text for definition); G stays high between the 
two. (C) dG/dB for B < B+, showing another first-order replica mode (magenta dotted line) in the particle sector for a variety of different-length devices. (D) ​​d​​ 2​ G / d ​V​DC​ 2 ​​ for a 
1-m device at a variety of different WG voltages VWG. This replica mode responds to changes in VWG, completely disappearing once the wires are pinched off. Symmetric 
to it, in the hole sector, a kink in conductance can be observed, only visible in our shortest 1-m devices. Conductance has been normalized by device length in (B) to (D).
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also able to vary the number of occupied subbands up to four, by 
tuning the WG voltage VWG until the upper layer starts to become 
2D when carriers delocalize between the wires. While the emergent 
hierarchy of modes becomes almost impossible to see in the data 
with more than one subband occupied, the parameters of two Fermi 
seas can still be quite reliably extracted; see Fig.  4A and section 
S1.6.5. Variation of the number of subbands provides us with an 
additional tool for assessing the microscopic interaction parameter 
of the Hubbard parameter U in our experiment at the quantitative 
level. The macroscopic dimensionless parameter controlling the 
Hubbard model in 1D is (37)

	​   =  0.032 ​ ​​ F​​ ─ a ​ ​ U ─ t ​​	 (1)

where a is the lattice parameter of the underlying crystal, t is the 
hopping amplitude, and F is the Fermi wavelength. For  < 1, the 
weakly interacting electrons are almost spin-degenerate, having 
double occupancy for each momentum state, as for free particles. 
For  > 1, each momentum state is occupied by only one electron 
due to strong Coulomb repulsion. Such a dependence of the sys-
tem’s behavior on  is qualitatively the same as the dependence on 

rs in all dimensions, reflecting the ratio of the total interaction energy 
to the kinetic energy.

We have varied the number of occupied subbands all the way up 
to four and fitted the bottom two using the model of two Fermi seas 
to extract the ratio of masses and velocities. Fitting the same data 
with the dispersion produced by the Hubbard model in a similar 
fashion to what was done before for the single-subband regime, see 
Fig. 2C, we obtain the values of  that correspond to these ratios for 
each individual subband and for each subband occupancy in Fig. 4B, 
which allows the data points from multiple wires with a variety of 
densities (as seen in Fig. 2E) to be collapsed onto the same curve. 
The agreement between experiment and theory seen here further 
reinforces our claim of two separate Fermi seas for spinons and 
holons, having collected statistics belonging to five different devices, 
fabricated from two different wafers, across different fabrication 
cycles, and measured independently of one another in different 
cooldowns. Comparing the already-extracted values of rs with  for 
all measurements in Fig. 4C, we find that the two are approximately 
proportional to each other with a coefficient of ≃1.5. We interpret 
the still-observable discrepancy as a manifestation of the screening 
effect that is not captured by rs but is taken into account explicitly in 

1st
2nd

1st
2nd

Fig. 4. 1D-1D screening. (A) dG/dB of a 5-m device mapped in the multisubband regime. Black dashed line marks the location of the subtracted 2D-2D parasitic signal. 
Arrows point to the location of spinon (s) and holon (h) modes, in both the hole (−) and particle (+) sectors, for each occupied subband (1 and 2). (B) Macroscopic dimen-
sionless Hubbard-model parameter  (see text for discussion) versus mass and velocity ratio, for devices of different lengths, as extracted by fitting the bottom two sub-
bands. The Hubbard model (black dashed lines) can reproduce well the observed experimental dependence. (C)  versus the interaction parameter rs, where an 
approximate linear dependence can be seen. The dashed curve corresponds to fitting using only data from the single-subband-occupancy regime. Note that, even when 
allowing for errors, all remaining points fall systematically below this line, indicating the presence of 1D-1D intersubband screening. (D) Hubbard parameter U/t versus 
the number of occupied subbands as extracted from . The asymmetry in screening between the first and second subbands is expected from their difference in densities. 
Points slightly offset horizontally from each other for clarity. Inset: Interaction parameter rs versus the number of occupied subbands. We can change rs by tuning the 1D 
density n1D of the wires (see fig. S4B in the Supplementary Materials).
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the Hubbard model via the two-body interaction energy U. The latter 
is proportional to the integral of the screened Coulomb potential, in 
which only the screening radius is changed in our experiment.

By means of the relation in Eq. 1, we extract the evolution of U/t 
from the already-obtained values of  and F as a function of the 
number of occupied subbands, as shown in Fig. 4D, for both the first 
and second lowest subbands, in different-length systems. Data corre-
sponding to four occupied subbands were excluded, as its proximity 
to the noninteracting limit made the fitting less reliable. Similarly, 
fitting to the dispersions of the third and fourth subbands was not 
attempted owing to the lack of sharp features and overall increase in 
map complexity. Nevertheless, two clear trends emerge: First, U de-
creases as more subbands are progressively filled, resulting in relative 
reductions of about ∼45% for the first subband and of ∼25% for the 
second subband; second, the bottom subband seems to be systemati-
cally more strongly screened than the second, most likely due to their 
difference in density. These trends are also apparent in Fig. 4C, where 
the dashed line is drawn through the single-subband points, and all 
further occupied subbands systematically fall below it. We note that 
the values measured in the single-subband regime are consistent with 
the estimates made in (38), where the long-range Coulomb interac-
tion between the electrons is screened by a conducting plate a certain 
distance away from the 1D wire. As far as the authors are aware, this 
is the first clear observation of screening effects between two 1D sys-
tems, with similar conclusions reported in (39) in 2D systems.

DISCUSSION
We have shown that spin-charge separation is more robust than 
previously thought, extending past the low-energy regime of the 
TLL to beyond the Fermi energy. By tuning the degree of screening 

of the Coulomb interaction by changing the confinement in our 
wires and hence the number of occupied subbands, we saw how the 
masses associated with the spin and charge Fermi seas evolve as a 
function of the interaction strength, with a remarkably good quan-
titative agreement with the predictions of the 1D Fermi-Hubbard 
model. At the same time, our comparison of quantum wires of dif-
ferent lengths confirms the prediction of the mode-hierarchy theory, 
observing systematically the emergence of at least two replica modes 
as the wire length decreases.

MATERIALS AND METHODS
Device fabrication
All tunneling devices measured in this work were fabricated using 
double-QW heterostructures, grown via MBE, composed of two 
identical 18-nm GaAs QWs separated by a 14-nm Al0.165Ga0.835As 
superlattice tunnel barrier (10 pairs of Al0.33Ga0.67As and GaAs 
monolayers). On each side of the barrier, there were 40-nm Si-
doped layers of Al0.33Ga0.67As (donor concentration, 1 × 1024 m−3), 
with the lower and upper spacers being 40 and 20 nm wide, respec-
tively. Wafer 1, however, differed from wafer 2 by having an addi-
tional 100 ×2.5 mm/2.5 mm GaAs/AlGaAs superlattice below the 
350-nm AlGaAs under the lower QW. This resulted in electron 
concentrations of about 3 (2.2) ×1015 m−2 with mobilities of around 
120 (165) m2 V−1 s−1 in the top (bottom) well of wafer 1 while 2.85 
(1.54) ×1015 m−2 and 191 (55) m2 V−1 s−1 for wafer 2, as measured at 
1.4 K. A 10-nm GaAs cap layer was used to prevent oxidation. The 
distance from the upper well to the surface was ∼70 nm.

The electrical (surface) structure of the device was fabricated on 
a 200-m-wide Hall bar. Contacts to both layers were established 
using AuGeNi ohmic contacts. Electron beam lithography was used 

Fig. 5. Vertical tunneling device. (A) Scanning electron microscopy images of the tunneling device, showing the SG, MG, BG, WG, and PG. The CG is not used in this work 
and is always biased together with BG. Several samples were fabricated to vary the length of WG from 1 to 18 m (pictured, 1 m). The bottom micrographs show, respec-
tively, the lower and upper ends of the wire array (∼400 wires). To increase the uniformity of the 1D system, we developed a novel air-bridge technique to avoid having 
to use a connecting backbone structure [see (23)]. (B) Gate operation and setting of tunneling conditions. We start by negatively biasing SG (1), followed by positively 
biasing MG so that conductance is allowed only in the upper well (UW) (2). Next, we negatively bias both CG (3) and BG (4) but enough to only deplete the UW. Under this 
configuration, any signal measured between the ohmic contacts must result from direct tunneling between each well. Inset: By varying WG and/or PG, one can observe, 
respectively, 1D-2D and 2D-2D tunneling between the wells (5 and 6). (C) Side profile of the tunneling device. It consists of a double QW heterostructure with a center-to-
center distance of about ∼32 nm.
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to define a split gate (SG), a midline gate (MG), a barrier gate (BG), 
and a cutoff gate (CG)—used in setting up the tunneling conditions—
together with an array of WGs—used in defining the experimental 
1D system (see Fig. 5A). The length of the WGs was varied from 1 
to 18 m. They were separated by 0.15- to 0.18-m gaps and had a 
width of 0.1 to 0.3 m. A parasitic injection region also ran across the 
entire width of the mesa, with a fixed width of 0.45 m. A parasitic 
gate (PG) was used to modulate its density. All dimensions, partic-
ularly regarding the wire region, were carefully chosen to achieve 
minimal modulation of the lower-well carriers.

Momentum- and energy-resolved tunneling spectroscopy
The tunneling setup was achieved as follows: First, the SG was neg-
atively biased to pinch off both layers underneath, followed by pos-
itively biasing the MG to open a narrow conducting channel in the 
top well. At the other end of the device, the BG and the CG were 
biased enough to pinch off only the top layer. Under these condi-
tions, any current injected through one of the ohmic contacts had to 
have tunneled between the layers to be detected (Fig. 5B).

Our spectroscopy technique consists of a low-noise, low-
temperature measurement of the tunneling current between the 
two 2DEG layers, which is given by (29)

	​​ I  ∝  ∫ dkdE [ ​f​ T​​(E − ​E​ F1D​​ − ​eV​ DC​​ ) − ​f​ T​​(E − ​E​ F2D​​ ) ]​    
× ​A​ 1​​(k, E ) ​A​ 2​​(k + ed(n × B ) / ħ, E − ​eV​ DC​​)

  ​​	 (2)

where e is the electron charge, fT(E) is the Fermi-Dirac distribution 
function, d is the center-to-center well separation, n is the unit nor-
mal to the 2D plane, ​B  =  − B​̂  y​​ is the magnetic field vector, ​​  y​​ is the 
unit vector in the y direction, and A1(k, E) and A2(k, E) are the spec-
tral functions of the 1D and 2D systems, respectively, with the cor-
responding Fermi energies being EF1D and EF2D. The tunneling 
current between the two layers is then proportional to the overlap 
integral of their spectral functions. We induce an offset eVDC be-
tween the Fermi energies of the two systems by applying a DC bias 
VDC between the layers. Similarly, an offset in momentum can also 
be obtained by applying a magnetic field of strength B parallel to the 
2DEG layers. When the field direction is along the (in-plane) y di-
rection, the Lorentz force then shifts the momentum of the tunneling 
electrons in the x direction by edB. Put together, one can therefore 
map the dispersion of each system with respect to one another by 
measuring the differential conductance G = dI/dV in both energy 
and momentum space.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2781
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