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Bound states in the continuum in a fluxonium qutrit
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Heavy fluxonium at zero external flux has a long-lived state when coupled capacitively to any other system.
We analyze it by projecting all the fluxonium-relevant operators into the qutrit subspace, as this long-lived
configuration corresponds to the second excited fluxonium level. This state becomes a bound state in the
continuum (BIC) when the coupling occurs to an extended system supporting a continuum of modes. In the case
without noise, we find BIC lifetimes T1 that can be much larger than seconds when the fluxonium is coupled to a
superconducting waveguide, while typical device frequencies are on the order of gigahertz. We have performed
a detailed study of the different sources of decoherence in a realistic experiment, finding that upwards transitions
caused by a finite temperature in the waveguide and decay induced by 1/ f flux noise are the most dangerous
ones. Even in their presence, BIC decay times could reach the range of T1 ∼ 10−1 ms, while preparation times
are of the order of 102 ns.
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I. INTRODUCTION

Confined quantum excitations generally decay when cou-
pled to a band of states with a continuous spectrum [1].
There are some exceptions to those decay processes where
a confined state lying at the continuum part of the spec-
trum lives forever. Those bound states in the continuum
(BICs) were predicted long ago by von Neumann and Wigner
[2]. The BICs have appeared on several platforms, some
following the laws of quantum mechanics as solid-state
devices [3–6] and others—under the wave-particle duality—
obeying classical wave mechanics [7,8]. For instance, there
have been many studies of BICs in photonic devices [9–14]
since their first experimental observation around 10 years
ago [15].

Besides the importance of BICs from a fundamental point
of view, those states have also found a broad range of appli-
cations in lasing, light trapping, and sensing, among others
[16]. For instance, Hwang et al. employed the concept of a su-
percavity mode created by merging symmetry-protected and
accidental BICs in momentum space and realizing an efficient
laser based on a finite-size cavity [17]. BICs have applications
as high-Q building blocks for acoustic sensors, antennas, and
topological acoustic structures [18]. Another example of the
technological utility of BICs is the work of Mao et al., in
which quasi-BIC magnetic resonance was shown to improve
the chiral lateral force on the paired enantiomers with linearly
polarized illumination [19].

There are also proposals to study BICs in high-coherence
quantum optical devices. Inspired by the physics of classical
BICs with confined electromagnetic fields [20–25], recent
works proposed to use two-level systems or qubits [26,27]
to create an extremely long-lived and confined single-photon

excitation. Another approach based on two-level emitters is to
employ their collective photon-mediated interactions to create
extended BIC states—referred to as multidark states—that
live on two or more separated qubits [28].

In this work, we show how to engineer a scalable, compact
BIC using a superconducting circuit, a fluxonium qutrit [29],
capacitively embedded in the continuum of microwave excita-
tions from a coplanar waveguide [see Fig. 1(a)]. Similar to the
classical setup in Ref. [30], where the BIC lives in a photonic
resonator connected to an open waveguide, our BIC is the
confined plasmonic excitation that lives in the fluxonium loop
and is prevented from decaying into the microwave guide.
More precisely, the BIC state is the symmetric excited state
|+〉 of the fluxonium potential at zero external flux �ext = 0
[see Fig 1(b)]. This state is a BIC state because the |+〉 → |0〉
transitions are suppressed because the charge operator is anti-
symmetric and cannot connect both states, as experimentally
observed in Ref. [29]. Moreover, the |+〉 → |−〉 transition can
also be suppressed by a suitable choice of the capacitive to
inductive energy ratios EJ/EC, as in capacitively shunted flux
qubits [31,32] or capacitively shunted heavy fluxonium qubits
at half frustration [33,34]. Using these design considerations
and realistic parameters, we prove that the BIC can reach very
long lifetimes, larger than seconds in the noiseless system and
10−1 ms in realistic experiments.

The structure of this work is as follows. We begin with
a thorough study of the fluxonium qutrit and the effective
capacitive and inductive interactions between the qutrit and
external fields. This study reveals a symmetry point at which
the |+〉 state effectively decouples from all external fields.
When the fluxonium is placed in a microwave guide, the
capacitive interaction between the qutrit and the propagating
fields is described by the effective models we found, and the
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(c)

FIG. 1. (a) Fluxonium threaded by an external flux �ext is ca-
pacitively coupled to a superconducting waveguide. (b) The device
potential at �ext = 0 as a function of fluxonium phase 2πφ/�0, with
�0 being the magnetic flux quantum. Its three minimum states are
denoted by |−1〉 , |0〉 , |1〉 . The first and second excited eigenstates
of the fluxonium are antisymmetric and symmetric superpositions of
those states denoted by |−〉 and |+〉 , with each one having odd and
even parities under fluxonium flux reversal. (c) Due to the odd parity
of the capacitive coupling, incoming radiation at the frequency of
the |+〉 state cannot excite this state. This state becomes completely
uncoupled from the waveguide if the device capacitance is made
large enough.

|+〉 state becomes a BIC. The lifetime of this state is shown to
be very long even in the presence of realistic 1/ f flux noise, a
finite temperature in the waveguide, and dielectric and induc-
tive losses. Finally, we also discuss some applications of these
compact BICs in quantum information and quantum sensing,
including open questions such as the robust preparation of the
|+〉 state in the open system. Those applications suggest that
BICs may have a technological impact on quantum electrody-
namics with superconducting circuits similar to the one they
had on photonic science.

II. FLUXONIUM QUTRIT

Let us formalize the intuitive picture of a BIC using a
fluxonium circuit. However, first, we must show that a field
coupled capacitively to the fluxonium cannot excite transi-
tions in and out of the second excited state. This information
is obtained from the expansion of the charge operator and
the Hamiltonian in the relevant low-energy subspace. This
subspace has a qutrit structure, where the BIC mode corre-
sponds to the second excited state |+〉. Incidentally, in this
qutrit representation of the heavy fluxonium states, flux and
charge operators adopt the simple representation of Sz and Sy

spin-1 operators, respectively.
Fluxonium [29] consists of a single Josephson junction

with Josephson energy EJ shunted by a capacitance Cf and
a large inductance L, as shown in Fig. 1(a). The Hamiltonian

for such a system is given by

Hf (q, φ) = 1

2Cf
q2 + U (φ),

U (φ) = 1

2L
φ2 − EJ cos

(
2π

φ + �ext

�0

)
. (1)

Here, q is the charge difference in the capacitance, φ is the
conjugate flux operator, and �ext is the external flux passing
through the superconducting loop. We work at �ext = 0 so
that the potential has the shape depicted in Fig. 1(b). This is
not the usual working point of the fluxonium qubit [35], which
is usually operated at �ext = �0/2 so that it presents a double-
well potential.

The characteristic energies of the fluxonium are the junc-
tion’s Josephson energy EJ , the charging energy introduced
by the capacitance EC = e2/2Cf , and the inductive energy
introduced by the inductance EL = (h̄/2e)2/L. The main
difference between this and other inductively shunted Joseph-
son junction devices lies precisely in the relation between
these parameters, which satisfy EL � EJ and 1 � EJ/EC [36].
Heavy fluxonium is realized approximately for EJ/EC > 5
[34].

Let us describe an analytical derivation of the qutrit Hamil-
tonian and relevant operators. At the symmetry point �ext =
0, the potential energy of the fluxonium has two local minima
on both sides of the global one. The lowest-energy eigenstates
around the three minima are denoted |L〉 , |0〉, and |R〉 , as
depicted in Fig. 2(a). Intuitively, one would want to use |L〉,
|0〉, and |R〉 as a qutrit basis. However, the use of the |L〉
and |R〉 vectors is problematic in common situations where
they have a strong overlap and are close in energy to nearby
excitations [upper thin gray lines in Fig. 2(a)].

One solution is to replace the |L〉 and |R〉 states with
slightly modified vectors that have been orthogonalized with
respect to other low-energy excitations. Figure 2(b) com-
pares the exact eigenstates (solid lines) of fluxonium with
intermediate values of EJ/EC together with the approximated
eigenstates (dashed lines) computed with a Gram-Schmidt or-
thogonalization up to the fourth excited state. The coefficients
involved in this orthogonalization are presented in Fig. 2(c)
as a function of EJ/EC . Notice that the maximum in the
coefficient a0 is due to the avoided level crossing between the
second and third excited states, so for larger values of EJ/EC

our picture based on an isolated state in each potential well is
no longer valid. In summary, the agreement between exact and
approximated eigenstates is good. It helps to capture the part
of the excited wave function that tunnels to the intermediate
region φ � 0, a feature that is not present in the original intu-
itive expansion. Moreover, these features introduce relevant
qutrit interaction terms that are mediated by higher-energy
excitations.

To keep computations tractable, we can orthogonalize the
|L〉 and |R〉 states with respect to just the third excited state,
|−1〉 = |L〉−a0|3〉√

1−a2 and |1〉 = |R〉+a0|3〉√
1−a2

0

, parametrizing the overlap

with a new parameter, a0 = 〈3|L〉 = − 〈3|R〉 [see Fig. 2(c)].
We will verify that this order of perturbation is sufficient to
recover the qualitative form of the qutrit operators. Let us
denote by ±φ� the position of the local minima in units of

062602-2



BOUND STATES IN THE CONTINUUM IN A FLUXONIUM … PHYSICAL REVIEW A 106, 062602 (2022)

FIG. 2. (a) Potential energy of the fluxonium for EJ = 10 GHz,
EC = 3.6 GHz, and EL = 0.46 GHz [37], shown as a solid black line
as a function of the fluxonium phase 2πφ/�0. Gaussian states in
the left |L〉, center |0〉, and right |R〉 wells are denoted with thick
solid lines, while thin gray ones are used for third and fourth excited
eigenstates. The dashed lines indicate the energy of each of the wave
functions (Gaussian potential approximation for the Gaussian states).
(b) Wave-function amplitudes of the three lowest eigenstates (solid
line) and the approximated ones considering the Gram-Schmidt or-
thogonalization up to the fourth excited state (dashed line) for the
previous fluxonium characteristic energies. (c) Overlap between the
Gaussian states in the left |L〉 and right |R〉 wells of the potential and
the excited states considered for the Gram-Schmidt orthogonaliza-
tion, the third (solid line) and fourth (dashed line) excited states, as a
function of EJ/EC .

flux and assume that the capacitance of the fluxonium is large
enough to prevent direct tunneling between them, 〈L|R〉 =
〈L|0〉 = 〈R|0〉 ≈ 0. The projections of the flux operator and
of the Hamiltonian onto the qutrit spin-1 base {|−1〉 , |0〉 , |1〉}
then read

φ ≈ φ̃�Sz + b(SxSz + SzSx ), (2)

Heff ≈ εS2
z + �

2
(S2

+ + S2
−) + �extI0 sin

(
2πφ

�0

)
. (3)

Here, E3 is the eigenenergy of the third excited state, φ̃� =
1−2a2

0

1−a2
0
φ�, b =

√
2a0√
1−a2

0

〈0|φ|3〉, and � = E3a2
0

1−a2
0
, with ε = U (φ�),

the potential energy of the system at the local minima at
�ext = 0. Last but not least, we can compute the fluxonium
charge operator acting on the qutrit subspace as in Ref. [31]
via the Heisenberg equation q = iCf

h̄ [H, φ]:

q ≈ iCf

h̄
[ib(ε − �)Sy + �φ̃�(S2

+ − S2
−)]. (4)

Our derivation expresses all operators in terms of the over-
lap a and the energy E3, quantities that may be estimated
using the harmonic states of the right, left, and central wells.
Intuitively, all terms containing a in Eqs. (3) and (4) are me-
diated by the third excited state. In the limit of large charging
capacitance or heavy fluxonium, the |−1〉 , |1〉, and |0〉 states
become strongly localized in the left, center, and right wells,
making the factor a exponentially small. In this case, the
charge and flux operators converge, respectively, to Sy and Sz

(notice the large factor ε in front of Sy in the q expansion),
and the Hamiltonian is diagonalized by the states |0〉 and
|±〉 = [|L〉 ± |R〉]/√2 at zero bias �ext = 0. As explained
in the Introduction, in this limit the charge operator q ≈ Sy

cannot mediate the decay of the |+〉 state to any of the other
states that form the qutrit basis, not the ground |0〉 or |−〉 state,
and the second excited state can be used to construct a BIC.
It is important to note here that this is not true outside of this
limit because, while direct transitions between the |+〉 and
ground |0〉 states are forbidden by symmetry, transitions to the
|−〉 state can be mediated by the charge operator in Eq. (4). In
this regime, this operator contains a non-negligible (S2

+ − S2
−)

term which can mediate transitions from the |+〉 state to the
|−〉 state and, eventually, to the ground state |0〉 through the
remaining term in the charge operator Sy.

There is not a priori a reason to expect the approximate
expansion in Eqs. (2)–(4) to capture the correct form of the
relevant qutrit operators. Indeed, we have imposed only the
orthogonalization of the qutrit subspace with respect to the
fourth level, thus leading to an overlap with higher eigenstates.
Nevertheless, we have obtained good qualitative agreement
between the exact numerical diagonalizations and the operator
expansions in those equations. In our numerical approach, we
compute the lowest-energy eigenstates, project the relevant
operators onto the qutrit basis, and express them as a combi-
nation of one-spin operators. For greater accuracy, we use the
sin(2πφ/�0) operator instead of φ and receive this and the
q operator as derivatives of the fluxonium’s Hamiltonian with
respect to flux and voltage perturbations, respectively. We use

062602-3



MARÍA HITA-PÉREZ et al. PHYSICAL REVIEW A 106, 062602 (2022)

FIG. 3. Expansion of the effective Hamiltonian Heff , sine of the
flux sin(2πφ/�0), and charge q in a generic form L = ∑

i Coi ôi.
(a) Coefficients of each term in the effective Hamiltonian of a fluxo-
nium qutrit with EJ/EC = 2.78 and EJ/EL = 21.74 [39] as a function
of the external flux �ext. (b) Zoom near the origin. Coefficients of
each term in (c) the effective flux sine sin (2πφ/�0) and (d) charge
q operators for the fluxonium with EJ/EL = 21.74 as a function
of EJ/EC at φext = 0. The legend indicates which spin-1 operator
accompanies each coefficient in the corresponding effective Hamil-
tonian or operator.

some of the subroutines of the CIRQUITQ library [38] and our
code.

Figure 3 illustrates the excellent agreement between our
predictions (3) and (4) and the expansions of the Hamiltonian
as a function of external magnetic flux �ext [Figs. 3(a) and
3(b)] and of the flux [Fig. 3(c)] and charge [Fig. 3(d)] as a
function of EJ/EC at �ext = 0. Following our previous dis-
cussion, we see that charge and flux effectively become Sx and
Sy, with other terms exponentially vanishing with increasing
fluxonium capacitance. Knowing that at zero flux, the second
excited state is |+〉, we have found rigorously that the matrix
element of this state with the other qutrit state is suppressed
exponentially fast for heavy fluxonium. As we show next,
this state becomes a BIC when the fluxonium is coupled via
its charge operator to an extended object with a continuous
spectrum.

III. BIC IN A FLUXONIUM QUTRIT COUPLED
TO A WAVEGUIDE

Let us now discuss the dynamics of fluxonium with a
capacitive coupling Cc to the continuum of propagating modes

in a coplanar microwave guide, as shown in Fig. 1(a). From
quantum optical considerations, the waveguide is a gapless
medium supporting frequencies that would allow the fluxo-
nium qubit to relax and decay from the |+〉 state to the |0〉 or
|−〉 state. However, based on our study of the charge operator,
we conclude that the decay rate �+0 = 0 due to flux-reversal
symmetry and that �+− becomes vanishingly small with in-
creasing fluxonium capacitance. In this limit, at zero bias, the
|+〉 state becomes a quasi-BIC state with an exponentially
long lifetime [40].

To compute the BIC’s lifetime, we use the spin-boson
model [41] for fluxonium connected to a waveguide of length
L and periodic boundary conditions. If the coupling is weak
enough, the Hamiltonian of the combined system can be ap-
proximated as [42,43]

H = 1

2C	

q2 + V (φ) +
N−1∑
n=0

h̄ωn

(
b†

nbn + 1

2

)
+ �H,

�H = Cc

C	

q
N−1∑
n=0

(−1)n

√
h̄ωn

2c0L
i(bn − b†

n). (5)

We have expanded the waveguide Hamiltonian using the
normal modes [bn, bm] = ih̄δn,m, with n, m = 0, . . . , N − 1,

introducing the waveguide’s capacitance per unit length c0 =
C/L and renormalized fluxonium’s capacitance C	 = Cf +
Cc.

Fermi’s golden rule [44] is a good estimate for the transi-
tion rates �i j between fluxonium states i and j assisted by the
modes of the waveguide. The formula requires the interaction
Hamiltonian �H and the density of states ρ(ω), which, for
a waveguide with a linear dispersion relation ω = νk, is uni-
form, ρ(ω) = L/(2πν). In this case Fermi’s golden rule (see
[45] for an inductive coupling) predicts

�i j = 2π
( Cc

C	

)2

G0Z| 〈i|Nf | j〉 |2ωi j (6)

as a function of the transition frequency ωi j , the number
of Cooper pairs in the fluxonium Nf = q/2e, and the line’s
impedance, Z = c0ν. As discussed, direct transitions from
|+〉 → |0〉 are forbidden by symmetry �+0 = 0, and the |+〉
state can decay only via the |−〉 state. In other words, if we
regard Fermi’s golden rule as a second-order expansion in
�H of the imaginary part of the self-energy [46], the main
contribution to that quantity at zero temperature is diagrams
involving 〈+|�H | −〉 matrix elements when �ext = 0.

Figure 4(a) displays the transition rates from the |+〉 to
|−〉 states (solid lines) as computed numerically using Fermi’s
golden rule and the exact eigenstates of the model. The param-
eters for each data set correspond to each of the experiments in
Refs. [29,33,37]. The ideal lifetime of the BIC—the inverse of
this relevant transition rate TBIC ≈ 1/�+−—is exponentially
enhanced as we increase the renormalized charging energy
of the fluxonium ẼC . The other relevant transition rate in the
qutrit subspace �−0 (dashed line) decreases much slower than
�+−, meaning that only the + states are uncoupled from the
waveguide.

It is important to remark that for certain parameters, the
energy of the third excited state |3〉 approaches the qutrit
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FIG. 4. (a) Transition rates for the allowed transitions in the
fluxonium qutrit as a function of the ratio between Josephson and
renormalized charging energies, ẼC = e2

2C	
. The transition rates from

the BIC state |+〉 to |−〉 appear as solid lines, and those from
|−〉 to |0〉 are shown as dashed lines. The Josephson energy of
the fluxonium is EJ = 10 GHz, and the linear inductances are cho-
sen so that they are experimentally realizable, EJ/EL = 17.31 [29],
EJ/EL = 21.74 [37], and EJ/EL = 33.79 [33]. The waveguide has
impedance Z = 50 �, and the coupling capacitance is taken as
(EC )c = 0.25 GHz. The vertical dashed lines indicate the value of
ẼC at which there is an avoided level crossing in the fluxonium
spectrum between the second and third excited states. (b) Transition
rates for the upwards transition between the |+〉 and |3〉 states of the
fluxonium as a function of the temperature T .

subspace and breaks all our approximations. As shown by the
red curve for EJ/EL = 21.74 in Fig. 4(a), this manifests as a
change in tendency in the decay rates at a point where the BIC
state ceases to exist. The value of EJ/ẼC at which this happens
depends strongly on the ratio EJ/EL. This value determines
the gap between the qutrit subspace and the high-energy levels
and sets a limit to the experimentally achievable lifetime of the
BIC |+〉 state. However, as also shown in Fig. 4, appropriately
tuning the ratio of inductive energies, such as EJ/EL = 33.79,
with EJ = 10 GHz, yields lifetimes that are exponentially
large, above T1 much greater than seconds, justifying calling
the |+〉 state a BIC.

IV. BIC DECAY DUE TO EXPERIMENTAL
IMPERFECTIONS

We have already shown that an isolated quantum system
composed of heavy fluxonium and a waveguide displays the
main properties of a BIC. However, we need to analyze other
decay channels associated with the noise, which are always
present in experiments. We consider two types of inelastic
processes involving external degrees of freedom. In the first
one, the fluxonium interchanges energy with the waveguide
at a finite temperature, while in the second, the energy is
transferred to other environmental degrees of freedom. Con-
sidering all those processes, we will show that the BIC decay
time is still rather long. We remark that our aim here is not to
have a full description of the nonunitary dynamic of the sys-
tem but to obtain a first estimation of the BIC decay time under
realistic circumstances, together with a better understating of
the main decay channels. When computing numerical results
in this section, we will employ the fluxonium parameters used
in each of the experiments in Refs. [29,33,37], while noise pa-
rameters are obtained from those reported in Refs. [29,33,34].

A. Temperature- and noise-assisted BIC
decay into the waveguide

We start with the effect of a nonzero temperature in the
waveguide, which could assist transitions from the BIC to
higher-energy states. We consider only the transitions from
the BIC state |+〉 to the third excited state |3〉 , as higher-
energy states are more difficult to excite. We show in Fig. 4(b)
the transition rates between |+〉 and |3〉 excited states as a
function of temperature T, computed with a version of Eq. (6)
which takes into account the finite probability of thermal
photons in the waveguide. We notice that the BIC lifetime is
strongly reduced at temperatures larger than the gap between
the BIC and third excited state. The reason is because the rel-
evant matrix elements between the |+〉 and |3〉 states always
overlap significantly, even in the heavy-fluxonium limit. Thus,
we should choose fluxonium parameters for which those two
states have an energy gap larger than the temperature. This
is, indeed, the case for the curves in Fig. 4(b) corresponding
to EJ/EL ≈ 33, which display transition rates with lifetimes
of the order of T1 ≈ 1 ms at an experimentally realizable
temperature of T < 15 mK.

The next decay channel we analyze is spontaneous photon
emission into the waveguide at a nonzero flux. Rigorously, the
symmetry that protects the BIC state appears only for integer
flux values �ext = �0 × Z. However, flux noise—especially
the slow one—can create a flux bias for long enough time,
so that the BIC decays to the ground. To understand this, we
rely on state-of-the-art models for how low-frequency flux
noise penetrates Josephson devices in quantum information
applications [47–49]. This noise has a power spectrum that
can be approximated as

S�(ω) ≈ 2πA2/ω, (7)

with A ≈ (10−5–10−6)�0 [35,50–52], which implies qua-
sistatic fluctuations with an amplitude σ ∼ (10−5–10−6)�0

(see the Appendix). Figure 5 displays the transition rate from
the BIC to the ground state as a function of the flux deviation
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FIG. 5. Transition rate from |+〉 to |0〉 due to radiative losses
to the waveguide as a function of the external flux �ext in log-log
scale. The Josephson energy of the fluxonium is EJ = 10 GHz. The
waveguide has impedance Z = 50 �, and the coupling capacitance
is taken as (EC )c = 0.25 GHz. The horizontal dashed line signals
the transition rate �+− ≈ 3 × 102 Hz for the fluxonium parameters
for the purple solid line, EJ/ẼC = 5 and EJ/EL = 33.79 (see Fig. 4).
The colored region signals the typical amplitudes of quasistatic fluc-
tuations in fluxonium produced by 1/ f noise.

�ext 
= 0. Figure 5 also confirms that the BIC becomes more
sensitive to external flux perturbations as the ratio EJ/EC is
increased, so we should not make “too heavy fluxonium.” The
expected low-frequency flux fluctuations, with amplitudes of
10−5–10−6�0, are denoted by a colored region in Fig. 5.
An example of parameters that work well corresponds to
the purple solid line in Fig. 5 with EJ

EC
≈ 5, EJ

EL
≈ 30. For a

pessimistic estimation of the fluctuations 10−5�0, we would
obtain a decay time T1 ∼ 10−1 ms, while for a moderately
optimistic noise amplitude 10−6�0, the expected decay time
is T1 ∼ 10 ms, of the same order as the radiative losses from
|+〉 → |−〉 in Fig. 4.

B. BIC decay into the environment

Besides fluxonium relaxation due to the coupling with the
waveguide, the BIC may also decay by releasing energy to or
absorbing energy from the fluxonium environment. Due to our
simplified circuit design, the noise seen by the fluxonium is
dominated by slow 1/ f flux noise and dielectric and inductive
losses [34,35]. We quantify their effect in the BIC decay time
using again Fermi’s golden rule [34,53]. For a noise source
with amplitude f (t ) that is coupled to the fluxonium via
operator Ô, giving an interaction of the form �H = f (t )Ô,
the transition rate from i to j states is

�noise
i j = 1

h̄2 |〈 j| Ô |i〉|2S(ωi j ), (8)

where S(ω) = ∫ ∞
−∞〈 f (t ) f (0)〉eiωt dt is the noise source’s

spectral density that can be determined following the
fluctuation-dissipation theorem [54] and ωi j is the transition
frequency. We use the positive frequency component of the
spectral density S(ω) to study BIC decay and the negative
one S(−ω) for BIC transition upwards, where both com-

ponents are related by S(−ω) = S(ω)e− h̄ω
KBT . We recall that

FIG. 6. Transition rates for the 1/ f flux-noise-induced transi-
tions in the fluxonium as a function of the ratio between Josephson
and renormalized charging energies, ẼC = e2

C	
. The Josephson energy

of the fluxonium is EJ = 10 GHz, and the linear inductances are
chosen so that they are experimentally realizable, EJ/EL = 17.31
[29], EJ/EL = 21.74 [37], and EJ/EL = 33.79 [33]. The 1/ f flux-
noise amplitude is taken to be A = 5 × 10−6�0. The vertical dashed
lines in both plots indicate the value of ẼC at which there is an
avoided level crossing in the fluxonium spectrum between the second
and third excited states. (a) Transition rates for the 1/ f flux-noise-
induced transition from the BIC state |+〉 to |−〉. (b) Transition rates
for the 1/ f flux-noise-induced transition from the BIC state |+〉 to
|3〉.

direct transitions from the BIC to the ground are forbidden
if the operator that couples to the noise obeys flux-reversal
symmetry, which is the case in what follows.

Apart from inducing decay to the waveguide, 1/ f flux
noise couples to the fluxonium persistent current Ip = φ/L
and produces its relaxation or excitation at a transition rate
given by Eq. (8) with spectral density given in Eq. (7).
Figure 6(a) shows the numerically computed |+〉 → |−〉 tran-
sition rates for an intermediate 1/ f noise amplitude A =
5 × 10−6�0. Contrary to what happens when studying the
decay transitions assisted by the waveguide, the |+〉 → |−〉
transition rate grows as the charging energy of the fluxo-
nium increases. For large values of this parameter, the 1/ f
flux noise dominates the transition time to |−〉 , significantly
reducing the lifetime of the BIC state, so that the regime of
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TABLE I. Transition rates corresponding to all the mechanisms that determine the lifetime of the quasi-BIC at 15 mK. The first three
columns correspond to fluxonium parameters, Josephson energy EJ = 10 GHz, and ratios of this quantity with renormalized charging energy
and linear inductances. The ratios EJ/EL = 21.74 and EJ/EL = 33.79 are those in Refs. [33,37], while the renormalized charging energy
EJ/ẼC is chosen to offer reasonable lifetimes. The decay rates without a superscript correspond to decay into the waveguide at a nonzero
temperature (downwards and upwards). The ones with the superscript �ext 
= 0 are due to decay into the waveguide due to a finite flux bias
produced by 1/ f flux noise. The other decay rates are due to relaxation to the environment, with the superscript � corresponding again to 1/ f
flux noise and the other corresponding to dielectric and inductive losses. We use a temperature of 15 mK; an intermediate value of the 1/ f
flux-noise amplitude, A = 5 × 10−6�0; and fixed quality factors, Qdiel = 1/(4 × 10−6) and Qind = 8 × 109, extracted from Ref. [34].

EJ
EJ
ẼC

EJ
EL

�+− �+3 �
�ext 
=0
+0 �

�ext 
=0
+− �

�ext 
=0
+3 ��

+− ��
+3 �diel

+− �diel
+3 �ind

+− �ind
+3 T1

(GHz) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (ms)

10 5 21.74 1 × 105 4 × 105 4 × 103 1 × 105 90 7 × 103 4 8 × 102 20 1 × 102 7 × 10−4 2 × 10−3

10 5 33.79 1 × 103 2 × 102 1 × 103 1 × 103 2 × 102 1 × 104 0.2 2 × 102 3 × 10−3 3 × 102 2 × 10−8 5 × 10−2

very heavy fluxonium should be avoided due to its enhanced
sensitivity to the 1/ f noise. This enhancement occurs because
the exponential decrease of the gap E+− with EJ/EC produces
an exponential increase of the effective noise that affects the
decay rate. We also analyze upwards transitions at T 
= 0 due
to 1/ f noise in Fig. 6(b), which yields smaller transition rates
than the previous one, |+〉 → |−〉 .

Reference [35] argued that one of the main sources of
relaxation in the fluxonium qubit is tangential losses into the
dielectric, similar to what happens in phase or transmons
qubits [55,56]. Dielectric losses can be identified as current
noise coming from the resistive part of the shunting capacitor
that couples to fluxonium flux φ [34]. Its spectral density
is Sdiel(ω) = h̄ω2C

Qdiel
[1 + coth ( h̄ω

2KBT )], where 1/Qdiel is the loss
tangent of the shunting capacitor which is proportional to
its impedance. Following Eq. (8), we compute the relaxation
rates for the dielectric noise-induced transitions |+〉 → |−〉
and |+〉 → |3〉 in Figs. 7(a) and 7(b), respectively. We assume
a fixed value of Qdiel = 1/(4 × 10−6) as in Ref. [34] and a
temperature of 15 mK. Although the dielectric losses may
dominate over the natural decay in the waveguide, the 1/ f flux
decay from the previous paragraph is still the one that seems
more problematic, at least in the parameter regime in which
we are working. The |+〉 → |3〉 transition rates are, at most,
of the same order of magnitude as the |+〉 → |−〉 transition
rates and hence do not notably modify the lifetime of the BIC
state.

Another important relaxation mechanism that affects the
fluxonium is inductive losses. It can be thought of as a current
noise, but this time associated with the resistive part of the
inductor, which couples to the flux operator φ with spectral
density Sind(ω) = h̄

LQind
[1 + coth ( h̄ω

2KBT )] [34]. In Fig. 8, we
show the relaxation rates associated with this mechanism us-
ing a quality factor Qind = 8 × 109 [34] at 15 mK. Similar to
what happens for the 1/ f noise, the relaxation ratios increase
when the fluxonium’s charging energy increases, although
their actual values are smaller than the ones we saw for the
case of 1/ f noise, making the latter dominate the decay of
the BIC. Transitions between the second |+〉 and third |3〉
excited states are irrelevant for this type of noise since they
yield significantly low transition rates.

We summarize the decay times of all the previous mecha-
nisms in Table I. First, upwards transitions in the waveguide
are rather dangerous because of the finite temperature. The

FIG. 7. Transition rates for the dielectric noise-induced tran-
sitions in the fluxonium at 15 mK as a function of the ratio
between Josephson and renormalized charging energies, ẼC = e2

C	
.

The Josephson energy of the fluxonium is EJ = 10 GHz, and the
linear inductances are chosen so that they are experimentally realiz-
able, EJ/EL = 17.31 [29], EJ/EL = 21.74 [37], and EJ/EL = 33.79
[33]. The dielectric quality factor is approximated to be Qdiel =
1/(4 × 10−6) [34]. The vertical dashed lines in both plots indicate
the value of ẼC at which there is an avoided level crossing in the
fluxonium spectrum between the second and third excited states.
(a) Transition rates for the dielectric noise-induced transition from
the BIC state |+〉 to |−〉. (b) Transition rates for the dielectric noise-
induced transition from the BIC state |+〉 to |3〉.
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FIG. 8. Transition rates for the inductive noise-induced tran-
sitions in the fluxonium at 15 mK as a function of the ratio
between Josephson and renormalized charging energies, ẼC = e2

C	
.

The Josephson energy of the fluxonium is EJ = 10 GHz, and the lin-
ear inductances are chosen so that they are experimentally realizable,
EJ/EL = 17.31 [29], EJ/EL = 21.74 [37], and EJ/EL = 33.79 [33].
The inductive quality factor is approximated to be Qind = 8 × 109

[34]. The vertical dashed lines in both plots indicate the value of ẼC

at which there is an avoided level crossing in the fluxonium spectrum
between the second and third excited states. (a) Transition rates for
the inductive noise-induced transition from the BIC state |+〉 to |−〉.
(b) Transition rates for the inductive noise-induced transition from
the BIC state |+〉 to |3〉.

reason is because the matrix elements between the BIC and
the third excited state are not small, not even within the limit
of very heavy fluxonium. Thus, we will need to set a tempera-
ture lower than the distance between those two levels in order
to avoid these processes. We have found that a temperature
of 15 mK is low enough for our parameters so that other
mechanisms dominate the BIC decay process. Between them,
the ones causing the fastest decay are related to the 1/ f flux
noise. Indeed, we have learned that the task of finding optimal
parameters to increase BIC lifetimes in the open system is not
as easy as for the closed one. The trick of increasing the mass
of the fluxonium, which could yield astronomically large BIC
decay times when fully isolated, does not work in the open
system as it enhances considerably the effect of the 1/ f flux
noise.

V. STATE PREPARATION

The simplest strategy to create the BIC state may be to sup-
press the BIC protection by a small flux bias δ�ext ≈ 10−3�0

and then populate it with an appropriate driving field. From
the results in Fig. 5, we see that a pulse of around 10 ns would
be enough. Once this is done, we need to return to zero ex-
ternal flux to restore the BIC protection. We can give a rough
estimation of the time �t required to do so adiabatically by
applying the Landau-Zener formula to the subspace expanded
by |+〉 , |−〉. The nonadiabatic transitions are suppressed by
the exponential factor exp (−2π�LZ), where we approximate
�LZ ≈ a2�t/(h̄�E ). a in the preceding formula is the energy
difference at the avoided level crossing, and �E is the energy
difference between the |+〉 state at zero and at a small bias
flux δ�ext. We have numerically estimated those quantities,
finding that an approximate time of �t ≈ 102 ns is needed for
adiabaticity. Related to this, Ref. [34] reported on a similar
protocol in which diabatic Landau-Zener transitions are em-
ployed to operate the qubit subspace of heavy fluxonium at
�ext = 0 (which is rather similar to our |+〉 , |−〉 subspace) at
typical times of 102 ns [34].

Another possibility is to use nonlinear coupling in flux-
onium charge or phase operators to drive the otherwise
forbidden transition |0〉 → |+〉 . Similar ideas have been ex-
perimentally demonstrated for a more difficult setup where a
nonlinear coupler between fluxonium and a resonator allowed
driving the symmetry-forbidden transition of the full system
[39]. In our proposed experiment, nonlinear coupling in the
fluxonium flux is already present when coupling to the waveg-
uide through mutual inductance [Eq. (5) with �ext = MIw
being the flux created by the waveguide]. However, the resid-
ual mutual inductance is probably too small, so the nonlinear
terms are negligible. Although it is beyond the scope of this
work to analyze the inductive coupling, it could provide an
interesting path to create the BIC for strong couplings [57,58].
If needed, one could try to enhance those nonlinearities and
make the coupling tunable via a superconducting quantum
interference device, similar to what we proposed in Ref. [32]
for flux qubits.

One could also create the BIC using Raman transitions,
similar to the experimental work in Ref. [33]. The idea is
to use the third excited state, the first one out of the qutrit
subspace, to produce the transition scheme |0〉 → |3〉 → |+〉
at zero external flux. This can be done by stimulating the
transition |3〉 → |+〉 with a probe field while pumping at the
frequency of the |0〉 → |3〉 transition. In Ref. [33], the authors
showed that this method allowed them to create a state mainly
localized at the right potential well of rather heavy fluxonium,
EJ/EC ∼ 18, in a time around 400 ns.

VI. CONCLUSIONS

In summary, we have shown how to construct a compact
BIC living in a superconducting fluxonium qutrit capacitively
connected to an open microwave guide. This device can be
brought to a regime where the second excited state is a
quasi-BIC one, displaying a long decay time that, in the ideal
case, can reach up to seconds. The critical ingredient for this
BIC is the destructive quantum interference between opposite
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persistent current states that appears at �ext = 0 [30]. As a
result, we have a fully tunable BIC that can be brought in and
out of the protected state by tuning the magnetic field in its
loop.

We have carefully analyzed several noise mechanisms,
finding that noise limits the BIC state’s lifetime, especially
for large values of the fluxonium’s charging energy. However,
choosing the right parameters of the system could enable ob-
taining fairly large BIC lifetimes, T1 ≈ 10−1 ms (see Table I),
much larger than the preparation times which we estimated
in the range of 102 ns (Sec. V). Regarding the different noise
mechanisms, we have seen that elastic processes where the
BIC gets excited to a higher level are detrimental to its life-
time. However, they can be suppressed by increasing EJ/EL or
decreasing temperature. Once this is done, 1/ f noise is likely
to dominate the relaxation of the BIC, contrary to what was
seen in previous fluxonium qubits where decay was mainly in-
duced by dielectric losses [34,35]. Added to elastic processes
with the 1/ f degrees of freedom, this noise can produce a
long flux bias removing the symmetry protection of the BIC.
It may be the case that this type of decay channel involving
1/ f noise plays an essential role in other persistent current
qubits operated at “sweet spots.” In any case, it would be
highly beneficial for the BIC to perform an appropriate surface
treatment of the fluxonium to reduce 1/ f noise as in Ref. [52].

The possibility of creating long-lived BIC states in small
fluxonium devices is exciting as a scalable platform for
storing protected quantum information. However, there is a
compromise between the lifetime of the BIC state and the
possibility of accessing those states using external fields, as
discussed above. We have commented on several ways to en-
gineer the BIC |+〉 states by dynamically tuning the external
magnetic fields while controlling the injection of photons,
using multiphoton-induced transitions via excited states or
via a nonlinear fluxonium-waveguide coupler, as explained in
Sec. V.

We have also shown that the fluxonium BIC configuration
is sensitive to external magnetic fields. In particular, we be-
lieve that it is possible to build a magnetic field sensor by
monitoring the |+〉 ↔ |0〉 resonance, as both the intensity and
linewidth of that resonance depend on small deviations of the
magnetic flux experienced by the fluxonium (see Fig. 5). For
instance, a change in magnetic field of �B = 10 nT would
produce a change in the magnetic flux of a typical fluxonium
(area ∼103 µm [35]) of �� ≈ 5 10−3�0, which activates
the BIC. The activation associated with the excess magnetic
field can then be recorded in the resonance measurements. We
believe this method could be competitive compared to others,
such as the ones based on nitrogen-vacancy centers [59].
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APPENDIX: QUASISTATIC NOISE

Typical flux fluctuations for a fluxonium device can be
extracted from its noise power spectrum. We are interested
in the low-frequency flux noise, which can bias the device for
long enough time and thus produce a decay of the BIC into the
waveguide. The dominant source of low-frequency flux noise
in the type of devices treated here is the one referred to as 1/ f
noise, so it is important to understand its properties in order to
characterize BIC decay in realistic situations.

We assume a power spectrum as explained in the Ap-
pendix of Ref. [35] based on many previous experimental
results:

S(ω) = 2πA2/ω,

with A = (10−5–10−6)�0. We set low- and high-frequency
cutoffs for the 1/ f noise as γ− = 10−2 Hz and γ+ = 101 Hz,
which is consistent with the experimental results in Ref. [51]
(red points in their Fig. 3). We will see that, in any case, the
values of those cutoffs do not affect the final results that much.

Once the noise model is set, we can extract the fluctuations
at the low-frequency cutoff, the important one for the BIC, as
the real part of the Fourier transform of the power spectrum:

σ 2 ≈ 〈�ext(t )�ext(t + τ )〉 = A2
∫ γ+

γ−

dω

ω
cos (ωτ ). (A1)

The time τ ∼ 1/γ− should be of the order of the inverse of the
low-frequency cutoff to get the amplitude of the quasistatic
fluctuations. Setting this value in the previous formula, we
obtain

σ 2 ≈ A2
∫ γ+

γ−

1

dx

x
cos (x). (A2)

Expressing the previous results in terms of the cosine integral
function

Ci(x) = −
∫ ∞

x

dx

x
cos (x) (A3)

and taking γ+
γ−

= 103, we get the desired amplitude, as given
by

σ 2 = A2[−Ci(103) + Ci(1)] ∼ O(1)A2. (A4)

As we previously stated, this result does not depend strongly
on the low- and high-energy cutoffs as |Ci(x)| < 1/x vanishes
fast. For our purposes, we take σ ≈ A because the factor of
order 1 is irrelevant due to the uncertainty in the magnitude
A itself. Thus, we have taken the fluctuations in Fig. 4 of the
main text as given by A = (10−5–10−6)�0.
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