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a b s t r a c t

In this work we study the localization properties of the disordered classical dual transmission lines,

when the values of capacitances fCjg and inductances fLjg fluctuate in phase in the form Cj ¼

C0þb sinð2pxjÞ and Lj ¼ L0þb sinð2pxjÞ, where b is the fluctuation amplitude. fxjg is a disordered

long-range correlated sequence obtained using the Fourier filtering method which depends on the

correlation exponent a. To obtain the transition point in the thermodynamic limit, we study the critical

behavior of the participation number D. To do so, we calculate the linear relationship between lnðDÞ

versus lnðNÞ, the relative fluctuation ZD and the Binder cumulant BD. The critical value obtained with

these three methods is totally coincident between them. In addition, we calculate the critical behavior

of the normalized localization length LðbÞ as a function of the system size N. With these data we build

the phase diagram ðb,aÞ, which separates the extended states from the localized states. A final result

of our work is the disappearance of the conduction bands when we introduce a finite number of

impurities in random sites. This process can serve as a mechanism of secure communication, since a

little alteration of the original sequence of capacitances and inductances, can destroy the band of

extended states.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The study of low-dimensional disordered systems with long-
range and short-range correlations have attracted scientific inter-
est in the last decades, because this type of disordered systems
can support extended states or a transition from localized states
to extended states [1–14]. However, for uncorrelated disordered
systems, the Anderson localization theory predicts the absence
of extended states for low-dimensional systems [15–17]. A very
interesting review on Anderson localization in low-dimensional
systems with correlated disorder, can be found in the work of
Izrailev et al. [18].

On the other hands, due to the analogy of the transmission
lines to quantum (electrons and excitons) and classical (atomic
vibrations) systems, recently, analytical and numerical studies of
disordered electrical transmission lines (TL) have been proposed
[19–22]. In Refs. [20,21], the localized-extended transition was
studied considering a ternary map to distribute the disorder in
the capacitances (diagonal disorder) of the TL. The phase diagram
separating localized states from extended states was obtained
ll rights reserved.
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using the finite-size scaling method. Given that the long-range
correlated sequences were generated using two very different
methods: the Fourier filtering method [23] and the Ornstein–
Uhlenbeck process [24], respectively, the phase diagrams are very
different. In addition, the behavior of the Rényi entropies [25] of
TL with Fibonacci distribution of two values of inductances have
been recently studied [22]. In this case, the diagonal and off-
diagonal terms of the dynamic equation vary simultaneously. The
electric current function IðoÞ of the TL found in this paper can be
classified as extended, intermediate and localized, in complete
accordance with the behavior of the quantum wave function of
Fibonacci one-dimensional tight-binding systems.

In the present work we study the localization behavior of the
classical dual electrical TL with long-range correlated disorder in
the distribution of capacitances fCjg and inductances fLjg. We
introduce the disorder from a random sequence with a power
spectrum SðkÞpk�ð2a�1Þ, where aZ0:5 is the correlation expo-
nent. From the resulting long-range correlated sequence fxjg

we generate the disordered distribution of capacitances and
inductances in the following form Cj ¼ C0þb sinð2pxjÞ and
Lj ¼ L0þb sinð2pxjÞ. In this way, the capacitances Cj and induc-
tances Lj vary in phase around C0 and L0, respectively. The
parameter b measures the amplitude of the fluctuation and varies
from b¼0 (periodic case) to bominðC0,L0Þ, to avoid a negative
value of capacitances and inductances.
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If the correlation exponent a take the value a¼ 0:5, we obtain
a random sequence (white noise) and the TL is in the localized
state for every frequency o. For a40:5 and depending on the
values of the fluctuation parameter b, the electric current function
IðoÞ can be a localized function or an extended function, for fixed
system size N. This implies the existence of a critical value of the
correlation exponent acðbÞ for each value b of the fluctuation
amplitude. To determine the localization properties of the electric
current Iðo,b,a,NÞ in the thermodynamic limit, we study the
critical behavior of the participation number Dðo,b,a,NÞ using
three different methods: (a) study of the linear relationship
between lnðDÞ and lnðNÞ, (b) study of the relative fluctuation
ZDðo,b,a,NÞ of the participation number D as a function of the
system size N and (c) study of the Binder cumulant BDðo,b,a,NÞ of
the participation number D as a function of the system size N. In
addition, we study the behavior of the normalized localization
length LðbÞ as a function of the system size N to determine the
critical curve bcðaÞ. With the obtained results we build the phase
diagram in the plane ðb,aÞ.

The problem studied in this paper is similar to the problem
studied by Shima et al. [11] in the electronic case. They studied
the localization properties of electron eigenstates in one-
dimensional systems with long-range correlated diagonal disor-
der. The phase diagram they get is similar to the phase diagram
obtained in our work.

This paper is organized as follows. Section 2 describes the
model and methods used to calculate the critical behavior of
some quantities. In addition, we indicate the numerical procedure
to calculate them. Section 3 presents the numerical results for the
set of quantities under study as a function of the correlation
exponent a, the amplitude of the fluctuation b and the system size
N. The critical behavior in the plane ðb,aÞ is presented. In Section 4
we discuss the secure communication. Finally, the conclusions of
our work are presented in Section 5.
2. Model and method

We consider the classical electrical dual TL with horizontal
capacitances Cj and vertical inductances Lj. Application of Kirchh-
off’s Loop Rule to three successive unit cells of the circuit leads to
the following linear relation between the currents circulating in
the (j�1)-th, j-th and (jþ1)-th cells [19–22]

djIj�Lj�1Ij�1�LjIjþ1 ¼ 0 ð1Þ

where dj ¼ ðLj�1þLj�ð1=o2CjÞÞ and o are the frequencies. In this
work we introduce the fluctuating correlated disorder in Cj and Lj

in the following form:

Cj ¼ C0þb sinð2pxjÞ

Lj ¼ L0þb sinð2pxjÞ ð2Þ

where parameter b measures the amplitude of each fluctuation.
In the last expression, fxjg is a long-range correlated sequence
generated using the Fourier filtering method [23]. The long-
range correlation of the sequence fxjg is controlled by the
correlation exponent a, where aZ0:5. The case a¼ 0:5 corre-
sponds to a random sequence (white noise). On the other hand,
we regain the periodic TL when b¼0. The specific values of each
long-range correlated sequences fCjg and fLjg are determined by
two parameters: the correlation exponent a and the fluctuation
amplitude b.

Using the following definition:

gj � Lj

Ijþ1

Ij

� �
ð3Þ
Eq. (1) can be written as a recurrence equation

gj ¼ Lj�1þLj�
1

o2Cj

� �
�

L2
j�1

gj�1

ð4Þ

To study the localization behavior of the disordered dual trans-
mission lines, we use a set of quantities that depends on the
frequency o, the parameters b and a, and the system size N. We
calculate the electric current function Iðo,b,a,NÞ, the localization
length xðo,b,a,NÞ, the Shannon entropy Sðo,b,a,NÞ, the participa-
tion number Dðo,b,a,NÞ and the inverse participation ratio
IPRðo,b,a,NÞ, where IPR¼D�1. All quantities are calculated
using the normalized electric current function Ij :

PN
j ¼ 1 9Ij9

2
¼PN

j ¼ 1 Qj ¼ 1, with Qj ¼ 9Ij9
2

and 0rQjr1.
The localization length xðo,b,aÞ is defined as

x�1
ðo,b,aÞ ¼ Lim

N-1

1

N

XN

j ¼ 1

ln
Ijþ1

Ij

����
���� ð5Þ

where Ij and Ijþ1 are the currents circulating in cells j and ðjþ1Þ,
respectively. Using the gj (3), xðo,b,aÞ can be written in the
following form:

x�1
ðo,b,aÞ ¼ Lim

N-1

1

N

XN

j ¼ 1

ln
gj

Lj

����
���� ð6Þ

For finite system size N we can define the normalized localization
length in the following way: Lðo,b,a,NÞ ¼ xðo,b,a,NÞ=N. With this
quantity and for fixed parameters b and a, and fixed system size N,
we can differentiate between localized and extended states accord-
ing to the following criteria: if Lðo,b,a,NÞZ1, the electric current
function IðoÞ is an extended function, and if Lðo,b,a,NÞo1, IðoÞ is
a localized function.

The Shannon entropy is defined as

SðoÞ ¼ �
XN

j ¼ 1

Qj ln Qj ð7Þ

and the participation number DðoÞ is defined as

D�1
ðoÞ ¼ IPR¼

XN

j ¼ 1

Q2
j ð8Þ

where IPR is the inverse participation ratio. All these quantities
are bounded in the following form:

0rSr lnðNÞ, 1rDrN,
1

N
r IPRr1 ð9Þ

Sometimes it is useful to work with the normalized inverse
participation ratio NIPR defined as NIPR¼ ðN � IPRÞ which is also
a bounded quantity, namely, 1rNIPRrN. For the periodic case,
we have NIPR0 ¼ 1:5.

For fixed frequency o and fixed system size N, we will study
the behavior of these quantities: Lðb,aÞ, Dðb,aÞ, Sðb,aÞ and IPRðb,aÞ
as a function of the fluctuation amplitude b and the correlation
exponent a. We will compare the behavior of these quantities in
the extended states and in the localized states. In this way we can
characterize each quantity for each kind of state. Given that every
quantity depends on the choice of the disordered sequence fCjg

and fLjg, we take the mean over 104 different configurations to
obtain a typical value of every quantity. Consequently, in what
follows, all figures show only averaged quantities, except for the
spatial dependence of the electric current function Iðb,aÞ (see
Fig. 9 below).

To determine the localization properties of the electric current
function Iðo,b,a,NÞ of the disordered transmission line in the
thermodynamic limit, we will study the critical behavior of two
quantities: (i) the participation number Dðo,b,a,NÞ, and (ii) the
normalized localization length Lðo,b,a,NÞ.



Fig. 1. Map of the extended states (LZ1, filled squares) and the localized states

(Lo1, empty squares) for finite N ¼ 217 and o¼ 3:6, when the parameters a and b

varies in the range: bA ½0:05,0:45� and aA ½0:6,2:4�.
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(i) The critical behavior of the participation number D.
The participation number D will be studied using the following

three different methods: (a) study of the linear relationship
between lnðDÞ and lnðNÞ, (b) study of the relative fluctuation
ZDðo,b,a,NÞ of the participation number D as a function of the
system size N and (c) study of the Binder cumulant BDðo,b,a,NÞ of
the participation number D as a function of the system size N.

(a) Linear relationship between lnðDÞ and lnðNÞ.
For extended states, the participation number Dðo,b,a,NÞ

diverges proportional to the number of sites N, but remains finite
for localized states [26]. Therefore, when the slope m of the linear
relationship between lnðDÞ and lnðNÞ goes to m¼1.0, we obtain
the critical value ac ¼ acðbÞ of the correlation exponent a, because
for aZac , we have mðaZacÞ ¼ 1:0. As a consequence, for aZac ,
all states are extended states.

(b) The relative fluctuation ZDðo,b,a,NÞ of the participation
number D, is defined as

ZDðo,b,a,NÞ ¼
DD

/DS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/D2S�/DS2

q
/DS

ð10Þ

where DD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/D2S�/DS2

q
is the fluctuation of the participation

number, and /D2S is the averaged squared participation number.
For long-range disordered systems, it has been shown that the
distribution function of the participation number Dðo,b,a,NÞ is
scale invariant at the Anderson transition [27,26]. This scale
invariance has been used to study the transition from localized
to extended states in different models [26,28–31]. The relative
fluctuation ZDðo,b,a,NÞ behaves in the following form: for
extended states, ZD goes to zero for increasing system size N,
and for localized states, ZD grows with increasing system size N

converging to a finite value. In consequence, when the system size
goes to infinity, N-1, the relative fluctuation ZD tends to a step
function. In this limiting case, a discontinuity appears which
separates the extended states from the localized states. Therefore,
when we study the behavior of ZD as a function of the critical
parameter a, for fixed fluctuation amplitude b, the curves with
different system sizes N will cross at a single point. This point
indicates the value of the critical parameter acðbÞ for the transi-
tion from localized state to extended state.

(c) The Binder cumulant BDðo,b,aÞ of the participation number
D is defined as

BDðo,b,aÞ ¼ 1�
/D4S

3/D2S2
ð11Þ

where /D4S is the average of the participation number to the
fourth power. From statistical physics it is known that the Binder
cumulant [32,33] of the order parameter permits the location of
the critical parameter. In the thermodynamic limit, where the
system size N-1, the Binder cumulant function jumps abruptly
from a constant value (BD-

2
3 � 0:67, for extended states) to zero

(BD-0, for localized states) at the critical parameter acðbÞ. For
finite system size N, the Binder cumulant function rounds and
changes smoothly to zero. As a consequence, the Binder cumu-
lants for different system sizes N cross at the critical point
ac ¼ acðbÞ, locating in this way the position of the transition from
localized states to extended states. In summary, we will use three
different methods to obtain the critical value ac ¼ acðbÞ, corre-
sponding to the transition from localized states to extended states
in the disordered long-range correlated dual transmission line.

(ii) Critical behavior of the normalized localization length L.
We will calculate the normalized localization length Lðb,a,NÞ for

different system sizes N. When we study the behavior of LðbÞ as a
function of the critical parameter b, for fixed correlation exponent
a, the curves with different system sizes N will cross at a single point.
This point indicates the value of the critical parameter bc ¼ bcðaÞ for
the transition from extended states to localized states [11].

Besides the methods mentioned above, using relation (3), we
will calculate the spatial dependence of the electric current Iðb,aÞ
at a given frequency o, as a function of the parameters b and a,
for fixed system size N. In this way we can obtain a complemen-
tary information of the localization properties of each state.
3. Numerical results

For the numerical calculation we consider a fixed frequency
o¼ 3:6, and we use arbitrary values of the conductance and
inductance: C0 ¼ 0:5, L0 ¼ 1:0. In addition, the average of every
quantity is calculated using 104 samples. To prevent a negative
value of capacitances Cj and inductances Lj, the amplitude of the
fluctuation b must be less than the minimum between C0 ¼ 0:5
and L0 ¼ 1:0 respectively. In this case we have the following
condition: 0rboC0 ¼ 0:5.

In first place, we study the behavior of the averaged normal-
ized localization length Lðb,aÞ as a function of the correlation
exponent a and as a function of the fluctuation parameter b, for
fixed system size N¼ 217. Fig. 1 shows the map of the extended
states (LZ1, filled squares) and the localized states (Lo1,
empty squares). The range of variation of the parameters a and
b in this map is the following: bA ½0:05,0:45� and aA ½0:6,2:4�. In
the map, we can see that for b¼0.05 the first extended state
appears for a minimum a value amin ¼ 1:36, and for b¼0.4 the
first extended state appears for amin ¼ 1:74. However, for b¼0.45,
it is not possible to find a minimum a value, and all states are
localized (Lo1, empty squares). For fixed system size N¼ 217,
this map indicates the minimum value of the correlation expo-
nent amin for the appearing of extended states for each b value. It
is very important to note that the map of Fig. 1 indicates the
behavior only for finite system size. As a consequence, in
the thermodynamic limit ðN-1Þ, the phase diagram separating
the localized states from extended states, must be different.

In Fig. 2 we show the behavior of (a) the normalized localiza-
tion length LðaÞ, (b) the participation number DðaÞ, (c) the
Shannon entropy SðaÞ and (d) the normalized participation ratio
ðN � IPRÞ, as a function of the correlation exponent a, for fixed
system size N¼ 217, for different values of the fluctuation ampli-
tude b, namely, b¼ f0:05,0:15,0:25,0:35,0:40,0:45g. In Fig. 2(a)



Fig. 2. Behavior of (a) the normalized localization length LðaÞ, (b) the participation number DðaÞ, (c) the Shannon entropy SðaÞ and (d) the normalized participation ratio

ðN � IPRÞðaÞ, as a function of the correlation exponent a, for N ¼ 217, for different values of the fluctuation amplitude b. For b¼0.45 we cannot find extended states.

In addition, for b40:25 the functions D, S and ðN � IPRÞ change their qualitative behavior.
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we can see the appearing of extended states ðLZ1Þ for all b

values studied, starting from a minimum value of the correlation
exponent amin, except for the case b¼0.45 where L� 0 for all a
values. This result is coincident with the general result shown in
the map of Fig. 1. In Fig. 2(b)–(d) we show the behavior of D, S and
ðN � IPRÞ, respectively. There we can see basically the same
behavior of Fig. 2(a), namely, the appearing of extended states
for all b values studied, from a minimum value of the correlation
exponent amin, except for the case b¼0.45, where each quantity
shows a behavior very different from the other curves, indicating
a localized behavior. In these three pictures, the extended states
appear when D, S and ðN � IPRÞ are very near to the values of the
corresponding periodic case. In addition, in the last three pictures
we can see a qualitative change of behavior of the quantities D, S

and ðN � IPRÞ for the case br0:25 compared to its behavior for
the case b40:25. We emphasize that these results are valid only
for finite system size N¼ 217. As a consequence, we can observe a
transition from localized states to extended states as a function of
the parameters b and a, at least for finite system size N¼ 217 and
fixed frequency o¼ 3:6.

To obtain the behavior of the TL with fluctuating long-range
correlated disorder in the thermodynamic limit, we use the
participation number Dðb,a,N,oÞ to study: (a) the linear relation-
ship between lnðDÞ versus lnðNÞ, (b) the relative fluctuation ZDðbÞ
of the participation number D, and (c) the Binder cumulant BDðbÞ

of the participation number D, as a function of correlation
exponent a for different values of b in the range bA ½0:05,0:48�.

Case (a). Fig. 3 shows lnðDÞ versus lnðNÞ for N ranging from
N¼ 210 to N¼ 220, for fixed b¼0.25 and different values of a. We
find a linear relationship for a¼ 1:4, where the slope m is less
than m¼1.0. For increasing a values, the slope m of the straight
line increases, and finally for a¼ ac ¼ 1:51, the slope is exactly
m¼1.0. This critical value is indicated by the linear fit to the
numerical data. In this case, the participation number D(b)
increases linearly with the system size N, which is an indication
of the extended behavior of the electric current function in the
thermodynamic limit. For aZac ¼ 1:51 the value of every slope is
m¼1.0. Also, we have studied lnðxÞ and lnðSÞ versus lnðNÞ to
compare the behavior of these quantities in the localized and
extended states. Fig. 4(a) shows lnðxÞ versus lnðNÞ. This picture
shows a behavior very similar to the behavior of lnðDÞ versus lnðNÞ
showed in Fig. 3. However, for the relation lnðSÞ versus lnðNÞ (see
Fig. 4(b)) we cannot find a linear relationship, at least for the
range of values of N studied.

Case (b). In Fig. 5 we show the behavior of the relative
fluctuation ZDðaÞ of the participation number D, as a function of
a for b¼0.25, for four different values of the system size N,
namely, N¼ f213,214,215,216

g. In this figure, we can clearly see



Fig. 4. Study of the behavior of (a) lnðxÞ and (b) lnðSÞ, as a function of lnðNÞ for

fixed b¼0.25, for different values of a. (a) When a increases, the relation lnðxÞ
versus lnðNÞ behaves in similar way to the behavior of lnðDÞ versus lnðNÞ indicated

in Fig. 3. (b) For the Shannon entropy S, we cannot find a linear relationship

between lnðSÞ versus lnðNÞ, at least for the range of values of N studied.

Fig. 5. Relative fluctuation ZDðaÞ of the participation number D as a function

of a for b¼0.25, for four different values of the system size N, namely,

N¼ f213 ,214 ,215 ,216
g. The critical point which separates localized states from

extended states in the thermodynamic limit appears for ac ¼ 1:51. This values is

exactly the same critical value shown in Fig. 3.

Fig. 6. Binder cumulant BDðaÞ as a function of a for b¼0.25, for four different

values of the system size N, namely, N ¼ f213 ,214 ,215 ,216
g. The critical point

appears for ac ¼ 1:51. This result is coincident with the critical value ac ¼ 1:51

obtained in Figs. 3 and 5.

Fig. 3. Study of the behavior of lnðDÞ versus lnðNÞ, for fixed b¼0.25, for different

values of a. When a increases, the curves tend to straight lines. For aZ1:4 the

slopes m of the straight lines are lesser than 1.0. However, for aZ1:51 the linear

relationship lnðDÞ versus lnðNÞ has slope m¼1.0, indicating the transition to an

extended behavior. For the critical value ac ¼ 1:51, we show the straight line

obtained by linear fit.
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that the critical point appears for ac ¼ 1:51. This critical value
is the same critical value found in Fig. 3 studying the linear
relationship between lnðDÞ versus lnðNÞ.
Case (c). Fig. 6 shows the behavior of the Binder cumulant
BDðaÞ of the participation number D, as a function of a for b¼0.25,
for four different values of the system size N, namely,
N¼ f213,214,215,216

g. In this case we again find exactly the same
critical point ac ¼ 1:51. The inset shows the details of the crossing
point. This result is totally coincident with the critical value
ac ¼ 1:51 obtained in Fig. 3 of the case (a), studying the linear
relationship between lnðDÞ versus lnðNÞ and the critical value
ac ¼ 1:51 obtained in Fig. 5 of the case (b), studying the relative
fluctuation ZDðb,a,NÞ. In Figs. 5 and 6 the average was taken over
5� 104 configurations to obtain more precise results. In addition,
in Fig. 7 we show the spatial dependence of the electric current
function Iðb,aÞ at a given frequency o¼ 3:6, for b¼0.25 and
N¼ 217, for four values of the correlation exponent a in the
vicinity of the critical value ac ¼ 1:51. There we can clearly see
that Iðb,aÞ is a localized function for a¼ 1:30 and a¼ 1:40, but is
an extended function for aZ1:51 This result is totally coincident
with the results obtained by the other methods for the fixed value
b¼0.25.

Using the procedures describe above, we have studied the
linear relationship between lnðDÞ versus lnðNÞ, the relative fluc-
tuation ZD, the Binder cumulant BD and the spatial dependence of
the electric current Iða,bÞ, as a function of a for different b values



Fig. 7. Electric current function Ij for b¼0.25, N ¼ 217 and o¼ 3:6. For a¼ 1:30 and a¼ 1:40, the electric current function is localized, but for aZ1:51, Ij shows an extended

behavior. These results are totally coincident with the results shown in Figs. 3, 5 and 6.
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in the range bA ½0:05,0:48�. The general results are the following.
In first place, for every bA ½0:05,0:43�, the critical values ac ¼ acðbÞ

obtained by the three different methods are totally coincident
between them, and furthermore, the critical values acðbÞ in this
range are practically the same: ac ¼ 1:51, except for the points
b¼0.41, b¼0.42 and b¼0.43, where we have acð0:41Þ ¼ 1:52,
acð0:42Þ ¼ 1:53 and acð0:43Þ ¼ 1:55. In the second place, for
b40:43, it is not possible to find critical values. The results
previously shown in Figs. 1 and 2, where all states are localized
states for b¼0.45, agree with this general result.

As a consequence, to study the localization properties of the
electric current function Iðb,aÞ around b¼0.43, we need to use
another method, different from the methods previously used. In
this case we study the behavior of the normalized localization
length LðbÞ as a function of b and as a function of the system size N,
for different values of the correlation exponent a. Fig. 8(a) shows the
behavior of LðbÞ as a function of b, for fixed system size N¼ 217 and
different a values, namely, a¼ f1:47,1:51,1:55,1:65,1:75g. This
picture shows that LðbÞ goes to zero for b40:43 (approximately),
indicating a localized behavior for every a value in this region.
Also, for bo0:43 the values of LðbÞ grow with increasing a
indicating an increase in the localization length xðbÞ. Fig. 8(b) and
(c) shows LðbÞ as a function of the system size N, from N¼ 213 to
N¼ 216, for two different values of a, namely, a¼ f1:47,1:65g. For
a¼ 1:47 (Fig. 8(b)) the curves do not intersect and as a consequence,
there is no critical point separating localized states from extended
states. This result is coincident with the result obtained above,
because for aracðbÞ ¼ 1:51, the electric current function Iðb,aÞ is a
localized function. On the contrary, for a¼ 1:65 (Fig. 8(c)) all the
curves intersect at the critical point bc ¼ 0:43, which separates
extended states ðbrbc ¼ 0:43Þ from localized states ðb4bcÞ.
Fig. 8(d) shows a detail of the intersection point. Using this method
for every aZac ¼ 1:51, we have obtained the same critical point
bc ¼ 0:43. As a consequence, for aZac ¼ 1:51, we obtain the critical
line b¼ bcðaÞ ¼ 0:43. The curves of Fig. 8 were obtained using 5�
104 configurations to obtain more precise results.

Using the critical lines, b¼ bc ¼ 0:43 and a¼ ac ¼ 1:51, we
build the phase diagram of the transition from localized states
to extended states in the plane ðb,aÞ (see Fig. 9). In addition, this
result implies that the critical parameter a which characterizes
the correlation and the amplitude of disorder b, are completely
independent.

Interestingly, a very similar phase diagram ðW ,pÞwas found by
Shima et al. [11] studying the localization properties of electron
eigenstates in one-dimensional systems with long-range corre-
lated diagonal disorder. The parameter p is related with the
correlation exponent a of the Fourier filtering method through
the relation p¼ ð2a�1Þ, and W is the distribution width defined
by the relation ejA ½�W=2,W=2�, which characterizes the diagonal
disorders through the site energies ej. In our work, we have
diagonal and off-diagonal disorder through the capacitances
CjA ½C0�b,C0þb� and inductances LjA ½L0�b,L0þb�. In Ref. [11]
one of the critical lines of the phase diagram is p¼2.0. This critical
line is practically the same critical line of our work, located
at a¼ 1:51, which corresponds to p¼2.0. In addition, for the
amplitude b of the fluctuation of Cj and Lj, we find a critical line



Fig. 8. Study of the normalized localization length LðbÞ. (a) LðbÞ for five different values of a for fixed N¼ 217. For b40:43 all states are localized because LðbÞ-0, but for

br0:43 the localization length xðbÞ increases with increasing a values. For pictures from (b) to (d), N varies from N¼ 213 to N ¼ 216. (b) LðbÞ for a¼ 1:47 (there is no a

critical point). (c) LðbÞ for a¼ 1:65 (a critical point appears for bc ¼ 0:43). (d) Detail of the critical point bc ¼ 0:43 for the case a¼ 1:65.

Fig. 9. Phase diagram ðb,aÞ separating localized from extended states in the

thermodynamic limit. This phase diagram is formed by two critical independent

straight lines: b¼ bc ¼ 0:43 and a¼ ac ¼ 1:51.
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b¼ bc ¼ 0:43, which is reminiscent of the critical line founded in
Ref. [11] W ¼Wc ¼ 4:0.
4. Secure communication

In this section we study the effect produced in the localization
properties of the transmission line when we change the values
of capacitances and or inductances in one or more sites of the TL
with random values R, with RAð0,1Þ. This procedure introduces
alterations in the original sequence given by the relationship (2),
which determines the distribution of capacitances fCkg and
inductances fLkg. We can introduce random values in four differ-
ent cases: (a) we change only the capacitances, Cn ¼ R, (b) we
change only the inductances, Ln ¼ R, (c) we change both quantities
with different random values R1 and R2, namely, Cn ¼ R1 and
Ln ¼ R2, with R1aR2, and (d) the change is the same in both
quantities, namely, Cn ¼ Ln ¼ R. It is important to note that in the
average procedure, the sites to be altered are chosen at random.

To numerically show the profound changes that occur in the
localization properties of the TL, we study the normalized
localization length LðaÞ as a function of the correlation exponent
a, for fluctuation amplitude b¼0.25, fixed frequency o¼ 3:6 and



Fig. 10. Normalized localization length LðaÞ as a function of a for b¼0.25. We show four different forms in which we can introduce 1, 3 or 5 impurities, alternating in this

way the original long-range correlated sequence (see Section 4). The most important effect in the normalized localization length occurs for the case Cn ¼ Ln ¼ R (Fig. 10(d)),

namely, when the impurities are introduced in phase, in one or more sites.
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fixed system size N¼ 217. For this specific case, b¼0.25, we have
found a phase transition from localized states to extended states
for the critical value ac ¼ 1:51 (see Figs. 3, 5 and 6). Fig. 10 shows
LðaÞ as a function of a for the four cases indicated above. In every
case we compare the value of the original sequence (open square)
with the sequence where 1, 3 or 5 sites are changed simulta-
neously (filled symbols). There we can see that the main effect of
the alteration of the original long-range correlated sequences, is
the decrease in the values of LðaÞ for the four cases studied. This
means that the TL jumps from extended states to localized states
for aZac ¼ 1:51, except for the case Cn ¼ R (see Fig. 10(a)), where
we must change more than 5 sites to obtain localized states. On
the contrary, the case Cn ¼ Ln ¼ R, shows the most pronounced
effect (see Fig. 10(d)), because even for the case of 1 random
change, we have LðaÞ]1 and for 3 random changes, the TL goes
to localized states ðLðaÞo1Þ.

This general behavior can be considered as an interesting
effect that can be used in secure communication [20,19], because
any attempt of external connection to the transmission line
modifies the long-range correlation sequence and therefore will
destroy the band of extended states closing the transmission
and stopping the communication. When we talk about secure
communication, we want to stress that a device using a transmis-
sion line accordingly to our long-range correlation sequence only
will allow the communication if there are no external connections
and therefore it is intrinsically secure. In addition, in the thermo-
dynamic limit the phase diagram showed in Fig. 9 disappears,
because the localized states only survive. The changes in the
localization properties are very pronounced for the case Cn ¼

Ln ¼ R (R random number), because any little alteration in the
original sequence changes the localization length abruptly. As a
consequence, the transmission line jumps abruptly from an
extended state to a localized state. This effect is more pronounced
when a is very near to the transition point ac in the plane ða,LÞ
(see Fig. 10(d)). In applications, it is necessary that a long
sequence with N4215 really prevent any intrusion in the
communication.
5. Conclusions

In conclusion, we have studied the localization properties of
the classical dual transmission lines when we introduce long-
range correlated disorder in the distribution of capacitances and
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inductances. The specific disorder is given by the following
relations: Cj ¼ C0þb sinð2pxjÞ, Lj ¼ L0þb sinð2pxjÞ, where fxjg is
obtained from de Fourier filtering method. To study the localiza-
tion behavior of the disordered dual transmission lines, we
consider a set of quantities which depend of the frequency o,
the fluctuation amplitude b, the correlation exponent a, and the
system size N. We calculate the electric current function Iðo,b,a,NÞ,
the localization length xðo,b,a,NÞ, the normalized localization length
Lðo,b,a,NÞ, the Shannon entropy Sðo,b,a,NÞ, the participation num-
ber Dðo,b,a,NÞ and the inverse participation ratio IPRðo,b,a,NÞ. We
use three different methods to obtain the critical behavior of the
participation number Dðo,b,a,NÞ: (a) study of the linear relationship
between lnðDÞ and lnðNÞ, (b) study of the relative fluctuation
ZDðo,b,a,NÞ as a function of the system size N and (c) study of the
Binder cumulant BDðo,b,a,NÞ as a function of the system size N.
These three different methods give exactly the same critical value
acðbÞ for each b value. In addition, to obtain the critical curve bcðaÞ,
we study the behavior of the normalized localization length Lða,NÞ as
a function of the system size N for different values of the correlation
exponent a. With these results we build the phase diagram in the
thermodynamic limit, which separates the localized states from the
extended states. Another interesting result is the disappearance of the
conduction bands when we introduce a finite number of impurities in
random sites. This process can serve as a mechanism of secure
communication, because any attempt of external connection to the
transmission line modifies the long-range correlation sequence and
therefore will destroy the band of extended states closing the
transmission and stopping the communication.
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