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Abstract
We provide a statistical model that accounts for the effects of dispersion on
stimulated Raman scattering cross-talk in wavelength division multiplexed
systems with random initial binary data. When either the input power
is not too large or the number of channels involved is moderate or the
transmission distance is small, channels are found to follow a Binomial
probability distribution that is the same for channels symmetric with respect to
the middle one. This distribution can be approximated by a Gaussian when the
number of channels is not too small. Our model works for any fibre dispersion
or number of channels.

1. Introduction

In recent years, stimulated Raman scattering (SRS) has attracted much attention, as this
mechanism is responsible for power transfer from the lowest to the highest wavelengths in
wavelength division multiplexed systems (WDM) [1]. This phenomenon is noticeable when a
large number of wavelengths or channels are involved. In fact, the lowest wavelength signals
may even become depleted to powers below the minimum receiver threshold levels. Recently,
the exact solution for SRS power exchange in WDM systems was found in the continuous
wave (CW) regime [2]. It was shown that for an initially fully loaded WDM system, SRS can
lead to an exponential-like power distribution among channels, which increases as a function
of distance [3, 4]. More recently, a model was proposed to explain the SRS power exchange in
high-speed systems [4]. This work was based on the fact that if channels have different group
velocities, for high enough chromatic dispersion WDM channels are walking off from each
other, and as a result every channel experiences only the average power of all its neighbours.
It is assumed that the initial signal in every channel is random binary data, i.e., it involves a
random sequence of ‘1’ and ‘0’ bits with pulse duration τ0. Since the probability of having
bits of ‘1’ or ‘0’ is usually taken the same, the problem can be reduced to a CW model for
which the power of channel m seen by channel k is half of the actual peak power carried
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by #m. In addition, it was supposed that statistical quantities can be approximated by their
statistical average. This assumption corresponds to a situation where the dispersion is high
enough. (See [4, 5]. See also [6] for interesting preliminary results.)

When the former assumption is dropped, the question remains as to how to account for the
statistical nature of bit power (per channel) in WDM systems at any transmission rate. In this
case, one would need to consider the different possible interactions or scenarios between the
randomly generated bits in every channel, whether these are ‘1’ or ‘0’. Note that the number
of possible combinations for the power exchange brought in by the randomness of the bit
sequences can be quite extensive as the number of channels N grows (concretely N ! in the most
favourable case). One would need to test these theories using the exact evolution equations, by
considering an enormous number of different initial conditions. Hence, proving the accuracy
of such statistical models involves a tremendous complexity and some approximations and
further insight are necessary. Several studies have addressed this issue in different ways
[7–10]. In some of these works the undepleted pump approximation has been employed.
Nevertheless, so far all previous models have failed to explain how every channel may have a
different probability distribution (see also [11–14] for some related results).

In the present work, we study the effects of chromatic dispersion on SRS cross-talk in
WDM systems. We assume that the specific order of the bits ‘1’ in any pattern does not play
a significant role. What is critical however, is their ratio with respect to the total number of
bits. Under this assumption, analytical results are obtained for the probability distribution
functions of every channel whenever a certain control parameter is small; it corresponds to
having either small input powers or small transmission distances; we show that in this case
the powers of all channels follow exactly a binomial probability distribution with channel-
dependent parameters. In most cases, they can be well approximated by Gaussian distributions,
unlike what it is claimed in [7, 8]. Numerical results show an excellent agreement with these
analytical expressions. When the control parameter is large, our numerical results show that
the power distribution is no longer Gaussian and it is unclear what distribution do powers
follow.

2. Problem formulation

2.1. Bit patterns and evolution equation

Let us assume a WDM system of N channels co-propagating in a single mode fibre. Channel 1
represents the lowest propagating wavelength and N the highest. We assume that each
wavelength or channel travels at a different group velocity.

Let Qk(z) be the power in channel k at the propagation distance z, vk the group velocity
and α the fibre loss. The effective core area is given by A. We assume that every channel
is separated by a frequency difference δf . Further G = g′δf/2A, and g′ is the slope of the
Raman gain of silica glass. The group velocities of channel k with respect to channel 1 can be
written in terms of the frequencies as follows: v−1

k = β
′
0 + (k − 1)β ′′

0 δ� + (k−1)2

2 β ′′′
0 δ�2, where

� = (k − 1)δ�, and δ� = 2πδf . Then, following [4, 15], the power in channel k satisfies
the boundary problem:

∂Qk

∂z
+

1

vk

∂Qk

∂t
+ α(z)Qk + GQk

∑
m�=k

(k − m)Qm = 0 (1)

with boundary condition Qk(z = 0, t) random binary data.
The exact solution to this nonlinear system of first order partial differential equations is

unknown. Following [4], we suppose that the power in channel k due to SRS crosstalk can
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be obtained by using an effective time-independent approximation, the so-called ‘continuous
wave’ approximation, and is given by

Qk(z) = Qk(0)J e−αz+GJkz

Qk(0) eGJkz + d
N∑

m�=k

Qm(0)bk,m eGJmz

. (2)

Here J is the total power in the system given by J = [
d

∑N
m=1,m�=k Qm(0)bm,k + Qk(0)

]
and

bk,m � 1 represents the ratio of ‘1s’ to the total number of bits in the sequence as explained
below (see equation (4)). The shape of the ‘1’ bits is also naturally taken into account through
the duty cycle d, which represents the fraction of the area under a bit ‘1’ with respect to the
total area of the bit slot. Thus, d = 1 if the bit occupies the entire bit period, or 1/2 if only
half of the slot if occupied. The RZ (return to zero) bit format is therefore preferred in our
model. In what follows, exp(−αz), which accounts for losses in equation (1), will be omitted
with no loss of generality. The loss/gain term can be easily introduced back in the model.
Further, we consider an initially equally loaded WDM channel: Qk(0) = C for all k. In this
case, (2) reads

Qk(z) = J


1 + d

N∑
m�=k

bm,k eGJ(m−k)z




−1

. (3)

Note that setting d = bk,m = 1 we recover the (exact) solution corresponding to the assumption
vk constant for which walk-off effects are not present. To understand the appearance in the
general case of the statistical quantities bk,m, that measure how the channel k is affected by
channel m, we reason as follows. Let us choose channel k as the reference channel. Because
of walk-off effects, a ‘1’ carried by #k will ‘see’ in the other channels a certain pattern of bits
passing by. Since the Raman effect is not affected by the direction of the bits, we consider that
the speeds or number of bits (whatever their relative directions) are always positive. Channel
k will then experience the cross-talk due to δk,m bits on channel m where δk,m is the number
of bits in channel m that overtake #k over a distance z. A simple dynamical argument shows
that δk,m = (vk − vm)z/(τ0vkvm). Further, the above group dispersion relation implies that
this number is proportional to the separation between the channels: δk,m = �|k − m|. The
parameter � gives the cross-talk between neighbour channels, i.e. � = δm−1,m is fixed and
equal to � = zβ ′′

0 δ�/τ0. We assume that � is an integer.
Let us take at this point a closer look at the possible bit sequences. Suppose the system

counts N channels and we fix the reference channel k = 1; thus after the propagation distance,
#1 saw � bits passing by on channel 2. The corresponding sequence may be: 00, 01, 10, or
11, that is 22 different sequences exist. Altogether, the number of pattern combinations that
#1 may experience from all the other channels is 2N(N−1)�/2.

This ominous situation is somewhat simplified if we suppose that the effect of channel m
on #k, (m > k) depends only on the number of ‘1’ bits from m that overtake k, but not their
actual position; that is, 10 and 01 pattern results in the same power SRS exchange. The validity
of the assumption can be understood by noting that the optical power is only exchanged via
SRS among bits of ‘1’. This approximation was checked by numerical simulations using
equation (1) and by launching bit patterns with different arrangements. The assumption was
found to work perfectly for low loss systems. The previous number of combination in the
example given above is then reduced considerably to (� + 1)(2� + 1) · · · ((N − 1)� + 1). For
example, if N = 8 the number of possible combinations is 7, 2 × 1016 in the general situation
but ‘only’ 15!! = 2, 6 × 107 under the actual assumption. The simplification also affects the
number of probability paths corresponding to a certain bit scenario, which is no longer the
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Figure 1. Interaction of channel 1 with neighbouring channels and � = 2.

same. For � = 2, the probabilities of occurrence for {00}, {01 or 10} and {11} are respectively

C0
2

/
4, C1

2

/
4 and C2

2

/
4 where Cm

n ≡ (n
m

)
. Figure 1 lists the different interactions a bit ‘1’ (on

channel k = 1) may have with other channels.
Under the former assumption the quantities of interest are b̃k,m and bk,m which represent,

respectively, the total number of ‘1’s’ that occur in a sequence of δk,m bits and the ratio of
‘1’ bits to the total number of bits. Because bits are launched independently of each other
and have the same probability of occurring it follows that b̃k,m is a Binomial random variable
b̃k,m = B

(
δk,m, 1

2

)
, and hence can take δk,m + 1 different values:

bk,m = b̃k,m

δk,m

, b̃k,m = 0, 1, . . . , δk,m,

(4)

P(b̃k,m = j) =
(

δk,m

j

)
1

2δk,m
, for 0 � j � δk,m.

3. Small parameter regime. Probability distributions

3.1. Binomial distribution

In [4] it was implicitly assumed that bk,m = 1
2∀m, k,m �= k. This corresponds to having

high speeds so as to deal with large sequences of bits. The present model aims to take into
account statistical deviations from this assumption. In this case, the random nature of the
quantities bk,m is inherited by the powers Qk(z). Note that the complicated form of expression
(2) renders hopeless the task of determining an exact formula for the probability distribution
of the random variables Qk, k = 1, . . . , N . On the other hand numerical simulations become
computationally unwieldy as the number of channels N increases since, as it has been pointed
out, Qk takes a tremendously large number of possible different values (N ! for the simplest
case � = 1).
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The situation can be greatly simplified if one assumes, in addition, that GzdJQk(0) is
small. In this case we find that the power in k evolves according to the following formula:

Qk(z) = C


1 − CGzd

�

N∑
m=1,m�=k

b̃k,m sign(m − k)


 . (5)

The validation of this formula for all k is sketched in appendix A assuming that the
dimensionless parameter GC(N − 1)2dz/2 is ‘small’, a condition which is valid in most
communications networks nowadays. It corresponds to having either low input power levels
or a small number N of different channels or small transmission distances. The situation when
N is large but Qk(0) ≡ C is small (low power regime) is of great interest; indeed, the initial
power launched in every WDM channel is usually kept relatively low to minimize nonlinear
effects. Note that in the appendix it is also shown that the approximation improves as k grows.

From the latter formula and the fact that b̃k,m = δk,m/2, it follows that the mean of the
power distribution for #k is given by

µk ≡ Qk = C

[
1 − GzdC

4
N(N + 1 − 2k)

]
. (6)

The variance is found to be given by

σ 2
k ≡ Var Qk(z) = (C2Gzd)2

8�
[(N − k)(N − k + 1) + k(k − 1)]. (7)

It is convenient to introduce new parameters, m+
k ≡ �

2 (N−k)(N−k+1),m−
k ≡ �

2 k(k−1),

m+
k + m−

k ≡ Mk and k0 ≡ (N + 1)/2. In terms of these the latter formula reads

µk = C

[
1 +

GzdCN

2
(k − k0)

]
, σ 2

k = (C2Gzd)2

4�2
Mk, Mk = �

(
(k − k0)

2 + k2
0 − k0

)
.

(8)

The mean grows linearly with k, but is independent of the dispersion parameter �. It shows
how the power is transferred from the lowest to the highest wavelength number channels. Note
that the maximum averaged cross-talk is Q̄N/Q̄1 = (1+β)/(1−β) where β = GzdC

4 N(N−1).
The variance σ 2

k is symmetric with respect to k0 and attains a minimum for k = k0, i.e. in
the middle of the cluster. It first decreases with k, and then grows quadratically again. Besides,
it is inversely proportional to the dispersion parameter �. Hence

µ1 ≡ C

[
1 − GzdC

4
N(N − 1)

]
� µk � C

[
1 +

GzdC

4
N(N − 1)

]
≡ µN (9.1)

σ 2
k0

= (C2Gzd)2

16�
(N2 − 1) � σ 2

k � (C2Gzd)2

8�
N(N − 1) = σ 2

1 = σ 2
N. (9.2)

To have a complete statistical information the exact probability distribution that Qk follows
is required. As we have pointed out, the number of possible values computed from (2) that
Qk may take, grows very quickly with N. Remarkably, if GC(N − 1)2dz/2 is small most
of the points tend to repeat each other and the latter probability distribution can exactly be
determined. Concretely, using statistical properties we find that Qk(z) ≡ Q can take only the
values qj where

qj ≡ C

[
1 − C

�
Gzdj

]
where −m−

k � j � m+
k (10)



2606 J Villarroel and A G Grandpierre

with probabilities (see appendix B)

P {Q = qj } =
(

Mk

m+
k − j

)
1

2Mk
. (11)

This means that Qk(z) = C
[
1 − C

�
GzdX

]
is a linear function of a random variable X where

X + m−
k ≡ m−

k +
∑N

m=1,m�=k b̃k,m sign(m− k) follows a binomial distribution B
(
Mk,

1
2

)
. Using

this and the representation (8) for Mk we can assert the following: for every channel k,Qk can
take only 1 + Mk different values with the power distribution probability symmetric respect to
its mean µk at which the peak power is attained; all channels have the same distribution (i.e.,
binomial up to a linear transformation) but the defining parameters are different; the distance
between peaks of different channels is constant and equals GzdC2N/2. Finally channels
symmetrically positioned with respect to k0 have the same distribution.

We next consider the study of the dependence of channel k on the cross-talk parameter.
Assume for convenience that Mk is even; in this case equation (11) gives that the peak
probability is attained at j = (

m+
k − m−

k

)/
2, i.e., at qj = µk which is independent of �; but

the peak probability P ≡ P {Qk(z) = µk} depends on Mk and hence on �:

P {Qk(z) = µk} =
(

Mk

Mk/2

)
1

2Mk
≡ P(Mk). (12)

This expression shows that

P(Mk + 2)

P(Mk)
= Mk + 1

Mk + 2
< 1 (13)

and hence that P decreases as Mk increases; hence so it does as � increases since Mk is
proportional to �. For large �, Stirling’s approximation shows that individual probabilities
vanish:

P {Qk(z) = qj } � P {Qk(z) = µk} ≈ 1/
√

πMk

−→
�→∞ 0. (14)

However, it is misleading to believe that as � → ∞ the probability distribution vanishes.
Indeed, an application of the well-known central limit theorem of probability theory shows
that

Qk(z) = C

[
1 − C

�
GzdX

]
→

�→∞
µk or P

{
lim

�→∞
Qk(z) = µk

} = 1 (15)

i.e., for large speeds Qk(z) is deterministic and is a linear function of k: Qk(z) =
C

[
1− GzdC

4 N(N + 1−2k)
]

and we recover the result of [4] (equation (6) of [4] and discussion
in following pages. See also [16]). In the next section we comment on numerical simulations
that corroborate all these facts.

3.2. Gaussian approximation

Formula (11) gives exactly the distribution of Qk assuming that GC(N − 1)2dz/2 is small.
If, in addition, N is large it is well known that the binomial distribution B

(
Mk,

1
2

)
can

be approximated by a normal distribution which implies Qk(z) = N
(
µk, σ

2
k

)
(see [17]).

Depending on the requirements accuracy, the normal distribution is applicable if Mk � 25, even
though smaller values give also good results. Reminding the reader that qj ≡ C

[
1 − C

�
Gzdj

]
and that

�

4
(N2 − 1) � Mk � �

2
N(N − 1) (16)
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Figure 2. Numerical fit for the probability distribution of the power in channel 1 when N = 4,
after considering all possible combinations of bit patterns in the other channels.

we see that, the number of channels required for the approximation to hold is, roughly,
N � 10/

√
�. In this case, for every k,Qk(z) is approximately Gaussian with pdf

P {Qk(z) = qj } ≈
√

2

πMk

exp

[
−2(j − Mk/2)2

Mk

]
. (17)

Alternatively, for every real q,

P {Qk(z) � q} ≈ 1√
2πσk

∫ q

−∞
exp

[
− (x − µk)

2

2σ 2
k

]
dx if

10√
�

� N. (18)

This shows that, at least in this regime, the pdfs are not lognormal unlike what it has been
claimed in [8].

4. Examples of probability distributions and numerical computations

We will now illustrate our results with numerical simulations that were carried out using
equation (3). Let us consider a non-zero dispersion-shifted fibre operating around 1.55 µm
with Aeff = 50 µm2. Our examples assume WDM systems with channels equally spaced in
the frequency domain with δf = 100 GHz. The fibre dispersion is D = 4 ps km−1 nm−1 at
1.55 µm. At this wavelength the slope of the Raman gain is g′ = 6.7 × 10−18 mW−1 GHz−1.
Every channel is loaded initially with a random sequence of bits in a RZ modulation format
with a duty cycle d = 1/2 and with a moderate input power of C = Qk(0) = 0.50 mW or
−3.0 dBm. The number of channels is taken relatively small to keep the numerical
computations under control (recall that the number of combinations grows as N ! for � = 1);
concretely we first consider a four channel system (N = 4) operating at 40 Gbit s−1 with
pulse duration τ = 25 ps.

Figure 2 shows the probability distribution of the first channel after a propagation distance
of z = 4.64 km. These results were obtained by directly using equation (3). Note again that the
points are partitioned on several distinct vertical lines. Actually, every probability corresponds
to a different power level. To numerically compute the pdf, these points must be added in each
intervals. The maximum power is obtained at −3.12 dBm which occurs with a probability
P = 0.132.

Figure 3(a) shows the Gaussian distribution for these four channels obtained using
equation (3). More precisely, the curves represent the envelope of the discrete probabilities.
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Figure 3. Numerical envelopes of the probability distribution for each of the 4 channels (a), and
comparison between a low and a high speed system for the first two channels (b).
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Figure 4. Probability distribution of channel 1 as obtained from numerical results (crosses) and
Gaussian fit (solid) with � = 1 (a) and � = 6 (b).

The distributions are symmetric with respect to the middle channels. In addition to this, the
channels that are spectrally farther apart suffer more from SRS and have therefore a bigger
deviation from the mean. In figure 3(b), we compare the pdf of the first two channels when
� = 6 as well as for a slower system with � = 2. The deviation is bigger when low speeds
are used. Likewise, the peak probability decreases when the speed increases, in agreement
with the prediction of equations (13) and (14).
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Figure 5. Probability distribution for an eight channel WDM system operating in the low power
regime.
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Figure 6. Probability distribution for an eight channel WDM system operating in the high power
regime.

Figure 4 compares the results as obtained from equation (3) and those given by the
Gaussian fit of equation (17). The exact probabilities are represented by the crosses while the
Gaussian approximation is given by the solid curve. Note again that here we use an envelope
over the actual points. The system involves four channels but only channel 1 is represented.
The first figure exhibits the pdf of a system with � = 1, and the second example assumes
� = 6. To compare with the theory we have considered a low input power of 0.1 mW for
each channel. The approximation is, as we expected, better in the second case since the
number of points is M1 = 6 in the first situation and M1 = 36 in the second. For � = 6 the
Gaussian approximation matches the numerical results quite well. Additional simulations also
confirmed that even at low dispersion rates the (Gaussian) approximation improved greatly as
the total channel number N increases. However, when the number of channels is small, the
binomial formula (11) still fits perfectly the numerical results.

The last figures 5 and 6, exhibit an eight channel WDM network operating at 10 Gbits s−1.
It corresponds to a slow system with a � = 1. The numerical probability distributions obtained
from equation (3) are depicted for each channel first for the low power regime (figure 5) and
secondly in the high powers range (figure 6). The bar plots resemble a Gaussian distribution
in the first case, in accordance with equation (17). As the total input power increases, the
highest channel stay relatively close to a Gaussian fit but channels at lower wavelengths get
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deformed and are no longer Gaussian; it is unclear whether they approach a lognormal shape
as claimed in [9].

5. Discussion and conclusions

In this paper, we investigated how walk-off affects the SRS crosstalk in WDM systems. We
take into account group velocity dispersion effects, i.e. we assume that different channels
have different group velocities. Effects arising from pulse dispersive effects and four wave
mixing are ignored. Our work was carried out under the following assumptions: (i) the
initial signal in every channel is independent random binary data, (ii) only the amount of
‘1’ bits plays a significant role but not their specific order, (iii) channels are initially equally
loaded, (iv) by using a time average, the SRS crosstalk under walk-off situations can be
approximated via an effective time-independent (or ‘continuous wave’) situation and finally
(v) either the initial power or the number of channels or the transmission distance is small.
Exact analytical formulae were derived for the probability distribution functions of every
channel; they are shown to have binomial distributions—which can be well approximated by
a normal distribution when the number of channels is not too small. The corresponding mean
and variance are channel dependent, narrower for the middle channels and with a broader
width —as a result of having more crosstalk interaction—for the end channels. The pdf gets
narrower as the speed is increased. Numerical calculations were performed. In all examples
considered we find that the numerical results fit perfectly with the predictions from theory:
the biggest difference found between theory predictions and numerical observations is around
2%.

The generalization of these results to the opposite case of having a large parameter,
namely having both large initial powers and a large number of channels, is also a problem of
overriding interest that we shall address in a future publication. As we have pointed out in this
case the distributions are not Gaussian anymore and it is unclear what statistical distributions
may show. Work in this direction is now in progress.

A second interesting problem is to consider a more general setting corresponding to having
a system which is initially loaded with a sequence of ‘0’ and ‘1’ bits that have a different
weight, i.e., ‘0’ and ‘1’ are assigned different probabilities; and where different channels are
loaded with different initial powers: Qk(0) �= Qm(0),m �= k. It is unclear if, in the low
parameter regime, binomial/Gaussian distributions will still obtain for this case.

Even more unclear at this stage is the question of as to whether the introduction of pulse
dispersion effects will modify the picture described here. However, unless some effective
approximation for this regime is devised, consideration of this problem seems to be out of the
scope of the techniques explained here.
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Appendix A. Power distribution

As it has been pointed out, the power of channel k is given by formulae (2) and (3). We are
assuming that every channel has, at the origin, the same power, i.e. Qk(0) = C,∀k and hence
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J = C
[ ∑N

m=1,n�=k dbk,m + 1
]

is the total power at z = 0. Note that if GJkz 	 1 one has

1 +
N∑

m�=k

dbk,m eGJ(m−k)z = J

C
+

N∑
m�=k

dbk,m(eGJ(m−k)z − 1) ≈ J

C
+

N∑
m�=k

dbk,mGJ(m − k)z.

It follows from (3) that

Qk(z) = J


1 +

N∑
m�=k

dbk,m eGJ(m−k)z




−1

≈ C


1 − dGCz

�

N∑
m�=k

b̃k,m sign(m − k)


 .

The above approximation requires that GJ |m − k|z be small. Note

J̄ = C


 N∑

m=1,n�=k

dbk,m + 1


 = (1 + d(N − 1)/2)C ≈ C(N − 1)d/2

with the last approximation valid when N is not too small. Likewise

Gz(m − k)J̄ =
(

1 +
d

2
(N − 1)

)
GCz(m − k) � GCz

(
1 +

d

2
(N − 1)

)
(N − 1)

≈ GCz
d

2
(N − 1)2.

Since the typical deviation of J is small, we can approximate J ≈ J̄ and the expansion is
validated for all k if GC(N − 1)2dz/2 is small. Nevertheless, note that the approximation
improves when k = N (since then the exponent is negative).

Appendix B. Derivation of some probabilistic results

It is remarkable that expression (5) giving Qk as a sum of random variables can be simplified
further. Note

X ≡
N∑

m=1,m�=k

b̃k,m sign(m − k) =
(

N∑
m>k

−
N∑

m<k

)
b̃k,m ≡ X+ − X−

where X+ ≡ ∑N
m,m>k b̃k,m is a sum of independent binomial variables b̃k,m = B

(
�|m−k|, 1

2

)
.

It is well known that in this situation X+ is also binomially distributed X+ = B
(
m+

k ,
1
2

)
where

m+
k = �

N∑
m,m>k

|m − k| = �

2
(N − k)(N − k + 1).

Likewise X− ≡ ∑N
m,m<k b̃k,m has a binomial distribution B

(
m−

k , 1
2

)
.

To proceed further, let us recall some standard probabilistic notation (see [17] for a
good account of probability theory). Call support of X the set of values X may take with
positive probability; let P(A|B) be the conditional probability of the event A given that
B happened: P(A|B) = P(A∩B)

P (B)
. It follows from the above considerations that X±, and

X = X+ − X− have support (i.e., may take on the values) Support X± = {
0, 1, 2, . . . , m±

k

}
,

Support X = {−m−
k , . . . , 0, 1, 2, . . . , m+

k

}
. By the theorem on total probability one has that
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for j ∈ Support X is

P(X = j) =
m−

k∑
l=0

P(X = j |X− = l)P (X− = l)

=
m−

k∑
l=0

P(X+ = j + l|X− = l)P (X− = l)

=
m−

k∑
l=0

P(X+ = j + l)P (X− = l)

= 1

2Mk

m−
k∑

l=0

(
m−

k

l

) (
m+

k

j + l

)
=

(
Mk

m+
k − j

)
1

2Mk

where we have used that X+, X− are independent variables and hence P(X+ = j |X− = l) =
P(X+ = j) and the well-known combinatorial identity:

n∑
l=0

(
n

l

) (
m

j + l

)
=

(
m + n

m − j

)
.

This is equation (11).
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