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SUMMARY

In this paper we describe a non-linear model with correlated observations which accounts for the elimination
rate of radiation in the lung of individuals who have been exposed to an accidental intake at some time.
The response is then modelled as a conditional Poisson distribution. When the leak is moderate or the
size of the particles is large a theoretical justification of this assumption is given and D-optimal designs
are computed. Copyright q 2006 John Wiley & Sons, Ltd.

KEY WORDS: D-optimality; Markov chains; radioactivity retention

1. INTRODUCTION

In this paper we discuss a mathematical model which describes the dose of radiation retained at
any time by a given worker who has suffered an acute intake of aerosol particles after a leak of
a hazardous radioactive substance occurs in a factory. Under natural assumptions we determine
the probability distribution of the retention under such a situation and show that, in an appropriate
parameter range, the conditional distribution is Poissonian. We suppose that a first bioassay is
performed in the individual as soon as the accident is detected who is then taken to the proper
place for analysis. We next use this framework to describe two-point optimal designs for which the
first point is fixed that provide an optimal time t∗ to perform a second bioassay in the worker. The
aim of such an experiment is to estimate the parameters I and p that measure number and size of
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the absorbed particles corresponding to a fixed subject. The importance from a Mathematical point
of view to perform a prompt first observation of the optimal design is discussed in Reference [1].

Following deterministic approaches as well as the International Commission on Radiological
Protection norms [2] we assume that the mean value of the retention in the respiratory tract can
be modelled by a multi-compartmental toxicokinetic model.

We construct a D-optimal design where the two observations are, obviously, correlated. Based
on the overall Mathematical simplicity of the resulting model and actual observations we find
it natural to assume that the response follows a conditional Poisson distribution. A theoretical
justification of this assumption is presented in Section 2 wherein we develop a stochastic model
of lung retention and we find that the response follows, in principle, a Binomial distribution. From
a computational point of view it must be noted that calculations with binomial distributions entail
important complications that may be overcome approximating the latter by a Poisson distribution.
The Fisher information matrix follows naturally from these results. We next discuss the validity
of the approximation when either the amount of substance leaked is moderate or the size of the
composing particles is large or the time span between observations is long. D-optimal designs,
maximizing the determinant of the Fisher information matrix, are computed in Section 3.1. For
recent general references on this kind of problem see References [3–7]. Minimax designs have
also been computed for the correlated observations case [8].

The Fisher information matrix has been widely used in the literature of optimal experimental
design theory, either for uncorrelated or correlated observations, to deal with non-linear models.
The use of the Fisher-information matrix is well justified whenever the relevant parameters are
fixed, since then the inverse of the information matrix corresponds to the asymptotic covariance
matrix of the estimators of the response function parameters. Moreover, Reference [9] shows that
if a distribution of the exponential family is considered, the inverse of the (normalized) Fisher
information matrix approximates well the mean squared error of the maximum likelihood estimates,
even for small samples, as long as the variances of the observations remain small.

2. MODEL BUILDING

2.1. Model requirements

As we have pointed out, we shall suppose that at a given initial time t0 a certain radioactive leak
occurs and some active aerosol substance is inhaled by surrounding individuals. With no loss of
generality we take t0 = 0 and measure time in days. Over time, the substance is progressively
eliminated and hence the concentration in a given individual will typically diminish away. We
shall now introduce a stochastic model that is computationally simple and models appropriately
the retention of the substance in individuals after time t . Let yt denote the amount, in adequate
units, of the given substance retained in the lung at time t . Obviously, yt is a random quantity
and hence it is natural to suppose that the current radioactive burden in lungs defines a random
process {yt }t�0 on a probability space (�,G, P). Let I ∈ N be a measure of the initial intake of the
worker exposed to the radioactive substance and let p be the activity median aerodynamic diameter
(AMAD). This parameter is defined as the median of the distribution of particles that compose the
leak, which have in turn different radioactivities and sizes; in short, I counts the number of the
particles involved while p measures its size. Typical values of p vary between 1 and 20 standard
anatomical units, while values of I corresponding to significant leaks are much larger lying between
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500 and 1500Bq. The fraction of the leak inhaled that is absorbed in the lung will depend on
several factors like conditions of exposure, retention parameters of the worker’s body and the
AMAD parameter p. Natural a priori requirements on the model are: (i) yt ∈ N with 0�yt�I , (ii)
the ‘trajectory’ function t → yt is decreasing with probability 1, and (iii) the present must contain all
statistical information necessary to determine the future; thus {yt } must be a Markov process taking
integer values, i.e. a continuous-time Markov chain. Another natural requirement on the model,
condition (iv), is that the average amount of radioactive substance present on the given individual
at time t must be proportional to the initial intake, i.e. that E(yt ) ≡m(t, p, I ) = I f (t, p) for some
f : R2 → R, the ‘retention function’. The basic assumption that lung burden is proportional to
the exposure is discussed within a simple deterministic model in Reference [10]. The function
f (t, p) measures the ratio of radioactive substance remaining in the given individual at time t . This
function must satisfy that 0� f (t0, p)�1 and that f is decreasing in both variables t and p. These
properties reflect the fact that clearance of inhaled particles augments with time and hence the
dose of remaining substance in lungs decreases with time. Finally, bigger particles are eliminated
faster than smaller ones. An obvious choice for the elimination rate 1 − f (t, p) is to use the
one arising from compartmental deterministic models where an overall composite rate is present
reflecting several elimination mechanisms between the different compartments and the exterior. See
Reference [11] for a general account of multi-compartment kinetic models. To describe inhalation
of radioactive aerosols the International Commission on Radiological Protection uses the so-called
[2] model. Based on ICRP 66 we require

E(yt ) = I f (t, p) where f (t, p) =
∑k1

i=1 �ie
−�i t−�i p∑k2

i=1 �′
ie

−�′
i p

≡
k1∑
i=1

�̃i (p)e
−�i t−�i p (1)

Here the indices k1 and k2 are related to the number of compartments into which lungs are
divided in mathematical multi-compartmental models. Further, � j , �

′
j ′, � j , �′

j ′ and � j , j = 1, . . . , k1,
j ′ = 1, . . . , k2 are certain lung inter-compartmental clearance parameters and �̃i (p) ≡ �i/

(
∑k2

j=1�
′
je

−�′
j p). These initial deposition parameters (IDP) must satisfy

∑k1
i=1 �̃i (p)e

−�i p<1. See
References [1, 12, 13] for an elaboration of these ideas and actual least square estimation of
parameters.

In Appendix C we give a useful form of function f (t, p) corresponding to actual data
(G. Sánchez, private communication. For an on-line version and more general pharmacokinetic
software see Reference [14]). Note that the large number of terms that appear in that sum make
it difficult to distinguish between different significant contributions; still we prefer to retain
such a complicated expression since it follows the regulations of Reference [2] with parameters
drawn by fitting compartmental models to real world data while it does not entail an unacceptable
computational burden. A simplified version containing only a few exponentials terms is given in
Reference [1].
Remark
In our context the problem of estimating the parameters I and p from observations taken from a
given exposed worker arises naturally. Note that E(yt ) depends linearly on I , unlike what happens
with respect to p, a fact that has important implications in the D-optimal design: it is well known
that such a non-linear dependence upon p poses a hindrance to an estimation of parameters. This
difficulty is usually overcome by giving initial nominal values to this parameter.
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Figure 1. Plot of: (a) m(t, p= 15, I = 1000); and (b) m(t, p= 10, I = 500).

Figure 1 shows plots of m(t, p, I ) ≡ I f (t, p) as a function of time for different choices of the
parameters.

2.2. The Markov chain

We next elaborate in the construction of the stochastic model. We find it reasonable to assume that
elimination of a certain inhaled aerosol particle is not affected by whether or not other particles
are being cleared from the lung; thus, in terms of elimination, different absorbed particles are
supposed to be statistically independent. We further assume that the probability to eliminate a
given particle from the exposed worker’s lung during the time interval [t, t + h), h>0, can be
written as �(t, p)h + o(h) for some appropriate function � depending on t and p; � can be
interpreted as being the infinitesimal lung elimination rate. Recalling that yt counts the number of
radioactive particles still retained in the lung at time t , it follows after a simple calculation that
the infinitesimal generator of the process is given by

P(yt+h = j − 1|yt = j) = j�(t, p)h + o(h)

P(yt+h = j |yt = j) = 1 − j�(t, p)h + o(h) (2)

P(yt+h =m|yt = j) = o(h), m �= j, j − 1

By the general theory of continuous time Markov chains (see, for example Reference [15]) we
have that Pi j (t1, t2) ≡ P(yt2 = j |yt1 = i), t1<t2, 0� j�i , solves Kolmogorov forward equation

�Pi j (t1, t2)
�t2

= ( j + 1)�(t, p)Pi, j+1(t1, t2) − j�(t, p)Pi j (t1, t2) (3)

with initial condition Pi j (t1, t1) = �i j , where �i j = 1 if i = j and �i j = 0 if i �= j .
Although this infinite system of differential equations with non-constant coefficients looks

formidable, it can be solved by consideration of the so-called z-transform (see Appendix A). The
transition function of the process yt is found to be given by

Pi j (t1, t2) ≡ P(yt2 = j |yt1 = i)=

⎧⎪⎪⎨
⎪⎪⎩
(
i

j

)(
f̃ (t2, p)

f̃ (t1, p)

) j (
1 − f̃ (t2, p)

f̃ (t1, p)

)i− j

, 0� j�i

0, j>i

(4)
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i.e. the distribution of yt2 conditional on the value of yt1 is binomial B(yt1, f̃ (t2, p)/ f̃ (t1, p))
where we define the function f̃ (t, p) via

f̃ (t, p) ≡ exp

{
−
∫ t

0
�(s′, p) ds′

}
(5)

In view of the physical interpretation of �(t, p) it follows that 1 − f̃ (t, p) can be interpreted as
the accumulated elimination function in the time interval (0, t].

Note also that (4) implies that trajectories of the process {yt }t�t0 are positive and decreasing,
having an absorbing boundary at 0. Further, it just requires a simple calculation to show that
Chapman–Kolmogorov equations

Pik(t1, t3) =
∞∑
j = 0

Pi j (t1, t2)Pjk(t2, t3) (6)

are satisfied for any times t1�t2�t3 and hence that the process is Markovian.

2.3. Marginal distribution

It is well known that a complete determination of the process requires to specify, in addition to the
transition function, the initial distribution. We suppose that every inhaled particle has a common
probability, say r , to be retained in the lung and that this initial retention happens independently
from the fate of the rest of inhaled particles. It follows from this assumption that if the initial
intake consisted of I particles then the amount of retained substance at t = 0 must be distributed
as y0 ∼ B(I, r). From this observation and formula (4) the distribution of {yt } is evaluated in
Appendix B via the theorem of total probability as

P(yt = j)=

⎧⎪⎨
⎪⎩
(
I

j

)
(r f̃ (t, p)) j (1 − r f̃ (t, p))I− j , 0� j�I

0, j>I

(7)

i.e. yt ∼ B(I, r f̃ (t, p)). It follows, in particular, that E(yt ) ≡ I r f̃ (t, p) is linear in the parameter
I as wished. Thus the above-constructed Markov chain satisfies all a priori imposed requirements
(i)–(iv). Connection with deterministic models is made imposing that r f̃ (t, p) = f (t, p) as given
by (1). This corresponds to the following election of the infinitesimal elimination rate function:

�(t, p) = − �
�t

log
k1∑
i=1

�̃i (p)e
−�i t−�i p (8)

In this case yt is distributed as yt ∼ B(I, f (t, p)).
For ease of notation in the sequel we simply write f (t, p) ≡ ft . It follows from (4) and (7) that

the bivariate distribution of the vector (yt1, yt2) with t1<t2 is given by

P(yt2 = j, yt1 = i)

=

⎧⎪⎨
⎪⎩
(
I

i

)(
i

j

)
f it1(1 − ft1)

I−i
(

ft2
ft1

) j (
1 − ft2

ft1

)i− j

, 0� j�i�I

0 otherwise

(9)
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Other statistically interesting features follow easily. Thus, we have whenever t0�t1�t2

E(yt2 yt1) = E[E(yt2 yt1 |yt1)] = E[yt1E(yt2 |yt1)] = E(y2t1)
ft2
ft1

= ft2 I (1 − ft1 + I ft1)

E[(yt2 − E(yt2))(yt1 − E(yt1))] = ft2 I (1 − ft1)
(10)

In particular

E[(yt2 − yt1)(yt1 − yt0)] − E(yt2 − yt1)E(yt1 − yt0)

= − I ( ft2 − ft1)( ft1 − ft0) (11)

and so increments of the process are not independent.
Likewise, the correlation function �(t1, t2), t1�t2 is obtained as

�(t1, t2) = E[(yt2 − E(yt2))(yt1 − E(yt1))]√
E(yt2 − E(yt2))

2E(yt1 − E(yt1))
2

=
(

ft2(1 − ft1)

ft1(1 − ft2)

) 1
2

(12)

2.4. Poisson distribution approximation

Formulae (7) and (9) give us the marginal and joint distributions Pyt1
, Pyt1 ,yt2

for any times t1�t2.
Unfortunately, it is well known that whenever N is large the evaluation of probabilities of the
binomial distribution B(N , q) is cumbersome and one usually must resort to using appropriate
approximations. A similar problem is found here when trying to evaluate the Fisher information
matrix on which D-optimal designs are based upon. Although the former results allow one to
evaluate the log-likelihood function the resulting formulas for the information determinant are,
unfortunately, quite involved and not amenable to analytic calculations. Indeed, this process requires
finding, say, E �

�I logPyt1 ,yt2
; this, in turn, involves the determination of

E

(
�
�I

log(I − yt1)!
)

= E

(
I−1∑
k=yt1

1

I − k

)

and it is unclear how this can be computed, even in a purely numerical way. Furthermore, even if
some approximations were used, numerical calculations become computationally unwieldy due to
the fact that the parameter I may take quite large values, even for moderate leaks. (Typical values
of I range between 1500Bq in large leaks to 100Bq for small ones; for example, for 235U , the
lower detection limit (LDL) below which detectors are unable to detect the leak is 95Bq).

For all these reasons the binomial distributions (7,9) are not adequate in the D-optimal design
methodology. To overcome this difficulty a Gaussian distribution for the retention is frequently
assumed in the literature. This can be well understood with our model since whenever both I and
I f (t, p) ≡ I ft are large (typically when I ft�30), the individual retention distribution (7) is well
approximated by a Gaussian distribution

yt ∼ N (I ft , I ft (1 − ft )) (13)

Depending on the actual values of the parameters the approximation may be well justified whenever
t is small, the initial leak is important and the AMAD size of the aerosol small.
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For longer times or if these conditions on the leak do not hold (i.e. the initial leak is moderate
or the AMAD size of the particles is large) one finds that the latter condition I ft�30 is quickly
saturated and a Gaussian approximation no longer applies. Instead, it is well known that whenever
N 	 1 and Nq = O(1) the binomial distribution B(N , q) can be well approximated by a Poisson
distribution P(Nq) (in practice, the approximation works quite well provided Nq�20). Hence, if
I 	 1 and I ft�20 we can use the approximation yt ∼ P(I ft ) where P stands for the Poisson
distribution, i.e. one has, approximately

P(yt = j)= (I ft ) j

j ! e−I ft (14)

Likewise we shall approximate the conditional distribution of (4): Pyt2 |yt1 ∼ B(yt1, ft2/ ft1), by
a Poisson distribution Pyt2 |yt1 ∼ P(yt1 ft2/ ft1)

P(yt2 = j |yt1 = i) = (i ft2/ ft1)
j

j ! e−i ft2/ ft1 , t1�t2, j�i (15)

A rough justification is based on the following. Suppose I 	 1 and let t1 be a time at which
I ft1�20; then, since f is decreasing, one has also that E(yt1 ft2/ ft1) = I ft2�I ft1<20 for all t2�t1,
showing that the (mean of the) ‘parameters’ in the distribution of Pyt2 |yt1 satisfy also the requirement
of applicability of Poisson distribution.

For a deeper argument we note that if C>20 then the probability that yt1 ft2/ ft1�C is small;
to this end, note that if t1 satisfies I ft1�20 then yt1 has Poisson distribution P(I ft1). Using the
classical Chebyshev’s inequality we can bound P(yt1 ft2/ ft1�C) as

P

(
yt1 ft2
ft1

�C

)
= P

(
yt1�

ft1C

ft2

)
�
(

ft2
ft1C

)2

Ey2t1

=
(

ft2
ft1C

)2

(I ft1 + I 2 f 2t1) ≡
(

ft2
ft1C

)2

(m2 + m(t1, I, p)) (16)

Note that unless I ft1 is quite close to the control value 20 and t1 to t2, the right-hand side
in Equation (16) will be small and the probability that yt1 ft2/ ft1 be greater than C>20 would
also be small. By way of example, suppose that I = 1000, p= 15 and that t1 and t2 are given by
t1 = 1

2 , t2 = 100 (these are typical values for the parameters and optimal observation times t1, t2,
see Tables I and II). Then, roughly, ft2/ ft1 ≈ 1

2 and we are guaranteed that P(yt1 ft2/ ft1�C) is
bounded by 0.10, 0.084 and 0.058 for, respectively, C = 22, C = 25 and C = 30. Alternatively, a
sharper bound is obtained using the estimate

P

(
yt1�

ft1C

ft2

)
� exp

(
− ft1C

ft2

)
Eeyt1 = exp

(
(e − 1)I ft1 − ft1C

ft2

)
(17)
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2006 J. LÓPEZ-FIDALGO AND J. VILLARROEL

which shows that, with choice of parameters, the relevant probabilities vanish exponentially fast
if C�14. For example, if C = 20,

P

(
yt1 ft2
ft1

�20

)
�10−7

The bivariate two-time distribution and correlation function �(t1, t2) follow easily and are given,
under this approximation, by

P(yt2 = j, yt1 = i)= (I ft1)
i (i ft2/ ft1)

j

i ! j ! e−i ft2/ ft1−I ft1 , �(t1, t2) =
√

ft2
ft1

(18)

Finally, we remark that the reader should not be misled into thinking that the Markov chain
constructed by this procedure is the same as the classical Poisson process in continuous time, well
known in both the applied and theoretical literature (see, for example References [15, 16]). Denote
the latter by {ŷt }; then, unlike our process, {ŷt } has increasing trajectories and a transition function
given in terms of a certain parameter � by

P(ŷt2 = j |ŷt1 = i) = e−�(t2−t1)

( j − i)! , t2�t1, j�i (19)

Differences between (15) and (19) are significant.

3. D-OPTIMAL DESIGNS

3.1. Fixed first observation

In this section we shall compute optimal designs that maximize the determinant of the Fisher
information matrix. We note that we do not expect a proportional improvement in the design by
allowing for another observation (a discussion of this fact in the uncorrelated case is given in
Reference [17]. According to the last section (see Equations (14) and (15)) the radiation retention
in the lungs may be modelled as follows: (i) at the initial observation time t1�t0 the observation
yt1 has distribution P(I ft1), and (ii) the conditional distribution of the second observation yt2 ,
given yt1 , is P(yt1 ft2/ ft1). In our scheme it is convenient that the first observation be taken as
soon as possible, i.e. t1 must be as small as possible (see Reference [1]). The design region for
the optimal time variable t2 is naturally taken as (t1, ∞). The log-likelihood function follows from
(18) and is given by

L(I, p, t1, t2) ≡ logPyt1 ,yt2
= yt1 log(I ft1) − I ft1 + yt2 log(yt1 ft2/ ft1)

−yt1 ft2/ ft1 − log(yt1 !yt2 !) (20)

After some algebra we find that the derivatives are simply given by

�L
�I

= yt1
I

− ft1

�L
�p

=
(

ft1;p
ft1

− ft2;p ft1 − ft2 ft1;p
f 2t1

)
yt1 + ft2;p ft1 − ft2 ft1;p

ft1 ft2
yt2 − I ft1;p

(21)
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Note that

E(yt1) = I ft1, E(yt2) = I ft2, E(y2t1) = I ft1(1 + I ft1)

E(y2t2) = E[E(y2t2 |yt1)] = I ft2 + I f 2t2(1 + I ft1)/ ft1 and (22)

E(yt2 yt1) = E[yt1E(yt2 |yt1)] = E(y2t1)
ft2
ft1

= ft2 I (1 + I ft1)

Let p1 ≡ I, p2 ≡ p. Then, from (21), (22) the entries of Fisher information matrix

Mi j (I, p, t1, t2) ≡ E

[
�L
�pi

�L
�p j

]

are found to be given by

E

[(
�L
�I

)2
]

= 1

I 2
var(yt1) = ft1/I

E

[(
�L
�p

)2
]

= I
f 2t1;p f

2
t2 + f 2t1 f

2
t2;p + ft1 ft1;p ft2( ft1;p − 2 ft2;p)

f 2t1 ft2
(23)

E

[(
�L
�I

)(
�L
�p

)]
= ft1;p

where ft;p denotes here the derivative of ft with respect to p.
Hence, the determinant of the information matrix takes the simple form

detM(I, p, t1, t2) =

∣∣∣∣∣∣∣
ft1/I ft1;p

ft1;p
I

f 2t1 ft2
( f 2t1;p f

2
t2 + f 2t1 f

2
t2;p + ft1 ft1;p ft2( ft1;p − 2 ft2;p))

∣∣∣∣∣∣∣
= ( ft1;p ft2 − ft1 ft2;p)2

ft1 ft2
(24)

It is interesting to point out that the determinant |M | depends only on p but not on I , and hence
that two-point optimal designs are I independent.

Maximizing by standard numerical methods detM(I, p, t1, t2) with respect to t2 we can obtain
a D-optimal second observation time t2 = t∗ for given values of the first observation time. In
Table I we have shown the corresponding values for the optimal second observation time t2 for
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Table I. Second observations t∗ time and determinant of the information matrix for
different first observation times t1 for a nominal value p= 10.

t1 t∗ | M | ×108

0 3.1 121.9
0.1 35.4 37.35
0.2 72.1 17.12
0.3 89.6 10.39
0.4 99.8 7.443
0.5 106.6 5.839
0.6 111.7 4.816
0.7 115.7 4.099
0.8 119.1 3.569
0.9 122.0 3.164
1 124.4 2.851

Table II. Second observations t∗2 time for different first observation times t1 and different
nominal values of p.

t1\p 1 3 5 7 9 11 13 15 17 19

0 74.2 28.6 3.4 3.2 3.1 3.0 3.0 2.8 2.8 2.7
0.1 105.9 79.5 56.2 47.8 40.2 29.8 14.4 4.2 3.7 3.4
0.2 120.9 102.1 85.2 79.1 74.6 69.5 63.5 56.4 48.0 37.4
0.3 127.9 113.4 99.7 94.7 91.4 87.8 83.9 79.5 74.6 69.0
0.4 131.3 119.6 108.1 103.9 101.1 98.4 95.3 92.0 88.4 84.4
0.5 133.0 123.4 113.7 110.0 107.7 106.4 102.9 100.1 96.7 94.3
0.6 135.7 126.0 117.7 114.6 112.6 110.6 108.5 106.5 103.5 101.7
0.7 134.9 128.1 121.0 118.3 116.6 114.9 112.9 111.5 108.5 106.6
0.8 135.5 129.7 123.6 121.4 119.9 118.3 116.5 114.8 111.6 111.6
0.9 136.0 131.1 125.9 123.9 122.6 121.3 119.8 118.5 116.6 114.1
1 136.5 131.3 127.8 126.1 125.0 123.8 121.5 121.5 119.1 116.7

different first observation times t1 with 0�t1�1. Recall also that the non-linear dependence upon
p of the optimal observation entails difficulties in the optimal experiment design process, whose
solution involves taking a given initial value for the parameter. Here we consider a nominal value
of the AMAD parameter p= 10. A remarkable feature that follows is the fast increase in the
second optimal time t∗ as t1 grows from zero.

In Table II optimal second times are shown for different values of p and t1. We take t1 ranging
between 0 and 1 since, as discussed below, we do not expect that in real life situations t1 could
become greater than 1 (see remark 3 below). Note how the optimal measurement time is quite
sensitive to variations of t1 from t1 = 0 whenever the particle size satisfies p�4. This dependence is
however much more moderate if p�3. This behaviour may be associated to the fact that elimination
of particles occurs faster the bigger p is. Furthermore, if p�4 and t1�0.5 it appears that the optimal
time is roughly independent of the particle size.
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Remarks

1. The simple representation (24) for the determinant of the information matrix is mainly
due to the fact that the derivatives of the log-likelihood function �L/�pi happen to be affine
functions of yt1, yt2 (see (21)). No such simple formula is obtained when the original binomial
distribution is conserved.

2. The related problem of estimating the intake parameter I alone, for given p, is interesting
from both a statistical and a biophysical perspective. The solution involves optimizing the
matrix element (M−1)11, where M−1 is the inverse matrix. A simple calculation shows that,
for given p, the optimal time t̃∗ for such an experiment is the time that maximizes the
determinant (24) too, i.e. t̃∗ = t∗.

3. We follow the discussion of López-Fidalgo et al. [1] who stress the fact that an important gain
in the optimal design is obtained taking the first time as small as possible. However, in our
case, it is somehow unrealistic to simply set t1 = 0. This is due to the following: Typically a
radioactive leak can only be detected when filters are analysed which happens every 8 hours
(i.e. 1

3 of a day). After the detection of the leak the worker must be taken to the nearest place
where a bioassay can be performed. In the example considered here relative to a specific
uranium factory, this time is estimated in 4 hours ( 16 of a day). That is, if we assume that
the accidental leak occurs at t0 = 0, then the first observation time after the intake can be as
great as 1

2 of a day.

3.2. Random first observation

We already discussed that we do not expect that the first observation time t1 equals 0 but rather
that it takes any value in the interval [ 16 , 1

2 ]. Thus an interesting generalization of the model is
obtained by allowing the time at which the leak is detected to be uniformly distributed on the
interval [0, 1

3 ], and hence allowing the initial measurement time t1 to be uniformly distributed on
the interval [ 16 , 1

2 ]. More generally, we shall consider here the case when t1 is uniformly distributed
on the interval [a, b]. In such a case the actual value of t1 is not known and the mean value of
the distribution can be used for parameter estimation. Note that now two conditional distributions
define the model: (i) The conditional distribution of the first observation yt1 given a first time t1,
P(I ft1) and (ii) the conditional distribution of the second observation yt2 at time t2 given yt1 and
t1, P(yt1 ft2/ ft1).

In this case the formulae given in Section 3.1 are still valid provided that expectations are now
understood as conditional expectations given t1. Thus, in order to compute the Information matrix
we need to calculate the expectation of the matrix elements given in Section 3.1. In this case we
have that the entries of the information matrix are obtained from (22) upon taking the relevant
expectation with respect to t1. Indeed, one has

Mi j ≡ E

[
�L
�pi

�L
�p j

]
= E

{
E

[(
�L
�pi

�L
�p j

)2
∣∣∣∣∣ t1
]}

Thus

E

[(
�L
�I

)2
]

= E

{
E

[(
�L
�I

)2
∣∣∣∣∣ t1
]}

= 1

I 2
E[var(yt1)] = 1

I
E( ft1) (25)
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2010 J. LÓPEZ-FIDALGO AND J. VILLARROEL

Table III. Second observations times, t∗2 for a fixed first time t1 = 1
3 and t DE

2 , t ED
2 for

a random first observation time t1 and different nominal values of p.

p 1 3 5 7 9 11 13 15 17 19

t∗2 129.3 115.9 103.0 98.3 95.1 91.9 88.3 84.4 80.0 74.6

t DE
2 127.6 111.8 99.5 93.35 90.33 86.9 82.4 78.9 71.6 66.9

t ED
2 121.9 113.6 98.9 96.4 90.8 86.4 82.5 76.5 71.9 65.7

and so forth. Noting that the only entry of the information matrix depending on t2 is E[( �L
�p )2|t1]

it follows that maximization of Fisher information determinant amounts to finding

t DE
2 = argmax

∫ b

a

f 2t1;p f
2
t2 + f 2t1 f

2
t2;p + ft1 ft1;p ft2( ft1;p − 2 ft2;p)

f 2t1 ft2
dt1

= argmax
∫ b

a

( ft1;p ft2 − ft1 ft2;p)2 + ft1 ft2( ft1;p)2

f 2t1 ft2
dt1 (26)

which, again, depends on p but not on I . Thus our optimization problem to compute the
D-optimal second time involves the following steps: for fixed p we maximize the latter expression
with respect to t2 and then we solve to obtain t2 = t DE

2 .
Note also that (26) can be written as

t DE
2 = argmax

∫ b

a

( ft1;p ft2 − ft1 ft2;p)2

f 2t1 ft2
dt1 (27)

As an alternative approach one can consider optimizing with respect to t2 the expected value of
detM(t1, t2) conditional in the value of t1. This involves

t ED
2 = argmax E[detM(t1, t2)|t1] = argmax

∫ b

a

( ft1;p ft2 − ft1 ft2;p)2

ft1 ft2
dt1 (28)

Here t DE
2 (t ED

2 ) stands for the optimal time computed by taking the determinant of the expectations
of (�L/�pi )(�L/�p j ) (respectively, the expectation of the determinant).

Table III shows D-optimal second times found from (27) and (28), respectively. Due to the
analytical complexity involved, optimal times must be obtained by resorting to some numerical
approximation. We have found that the Mathematica software works quite well to handle this
problem. It is interesting that, in all cases, the results are rather similar.

When the first observation time is randomly distributed it is unclear which of these two ap-
proaches must be preferred. Pronzato [18] has argued in favour of maximizing the expected value
of the determinant with respect to the possible fluctuations of the experimental variables (and hence
using t ED

2 as an optimal time) based upon the fact that it is the conditional matrix which carries
information on the precision of parameter’s estimation; in our context such a situation is obtained
if the accident time were known, and hence t1 given, before the parameter estimation takes place.
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However, the situation that one has in the present paper seems to be different: the accident time is
unknown before the parameter estimation is carried out and hence so it is the value of t1. Thus, for
parameter estimation one could naturally use the mean value of the distribution but not t1 which
remains unknown. This suggests that the first approach is more consistent with the problem that
has been considered in this paper.

We could also compare with the optimal time obtained in Section 3.1 for a fixed first time at the
middle point of the interval, t1 = 1

3 . The second times are also shown in Table III. To be specific,
let us take p= 10; then the optimal times obtained by assuming an uniform distribution for t1
are, respectively, t DE

2 = 88.5 and t ED
2 = 88.6. If, however, we fix t1 to correspond to the middle

point of the interval, i.e. if we set t1 = 1
3 then the optimal second observation time is obtained as

t∗ = 93.6. More generally, it appears that the optimization procedure corresponding to fixed initial
time t1 = 1

3 seems to overestimate the proper optimal time, as compared to that obtained with an
uniformly distributed t1.

Table III shows D-optimal second times found from (26) when the first observation is assumed
to be uniformly distributed on [ 16 , 1

2 ] corresponding to different values of p.

4. DISCUSSION

In this paper we have developed a mathematical model which describes the random lung radiation
amount retained at any time by a given worker exposed to a leak of aerosol particles. We have given
the relevant probability distribution under such a situation and show that, in a certain parameter
range, it corresponds to a Poissonian distribution. This theoretical model is used to describe optimal
designs that provide an optimal time t∗ for second bioassay with the first time given and taken as
small as possible. Such an experiment aims to estimate the parameters I and p corresponding to
a fixed subject.

The model has been fitted so that the average amount of retention corresponds to the retention
function advised by ICRP [2] regulations. The latter is a complex expression having multiple
exponential terms (see Appendix C). It is well known that such a model may be reasonably
approximated in terms of just a few exponential terms. However, we prefer using the original
complex model since we have found that it does not entail an important burden from a computational
point of view, corresponds to the real biophysical situation and preserves the physical meaning
of the coefficients. A simplified version containing only a few exponentials terms is given in
Reference [1].

A glance at Table II shows that t∗ is quite sensitive to the first observation. Note that only the
bioassay time and the parameters I and p are unknown here, and hence the sooner the second
observation is made the sooner the model may be estimated. In view of this fact our results strongly
advice for filters to be checked as often as possible as this would result in an important time saving
for the optimal observation which, in turn, entails an important gain in both the affected worker’s
health and the factory’s security. Otherwise, statistical models must be modified as to take this
deficiency into account.

There are several ramifications of interest. A natural, closely related problem is the estimation
of the intake parameter I alone. As commented, the optimal time follows easily from our results.
A second interesting avenue stems by considering the more general case when several workers are
exposed to the aerosol leak; in this case one may wish to design experiments that aim to estimate
the population parameters I and p.
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Another direction in which the model may be improved corresponds to the case when the particle
size p is also a random explanatory variable with a given distribution, known only after the bioassay
has been performed. This might happen in a situation where the leak affects differently the different
sections, and hence workers, of the factory. Again, to account for this more general case a new
framework must be considered. See Reference [19] for a description of such an approach.

APPENDIX A

In this Appendix we show how equation (4) is obtained by solving equation (3) for Pi j (s, t) ≡
P(yt = j |ys = i) where s�t are two times and i� j are integers. Note that none of the ‘backward’
variables s and i ∈ N appear explicitly in (4) and hence that Pi j (s, t) depends upon them only
in a parametric way via the initial condition. Thus, for ease of notation, we drop this dependence
and set q( j, t) ≡ Pi j (s, t) whereupon we find that q solves

�q( j, t)

�t
= ( j + 1)�(t, p)q( j + 1, t) − j�(t, p)q( j, t)

with initial condition q( j, s = t) = �i j .
This equation is solved via the introduction of the ‘z-transform’ �(z, s) defined as

�(z, t) =
∞∑

j=−∞
z jq( j, t)

and

q( j, t) = 1

2	
√−1

∫
S1

�(z, t)

z j+1
dz

Here z is a complex variable defined on the unit complex circle: z ∈ S1 ≡ {z ∈ C : |z| = 1}. See
Reference [20, pp. 307–385], for a good account of properties of such an object. We find, upon
substitution that �(z, t) must solve

��(z, t)

�t
+ �(t, p)(z − 1)

��(z, t)

�z
= 0

with initial condition at t = s

�(z, t = s) =
∞∑

j=−∞
z jq( j, s = t) = zi

This is a first-order linear partial differential equation that can be solved by the characteristics
method. The characteristic variables for this equation can be taken as (t, 
) where 
 = (z − 1)
exp{−∫ t

s �(s′) ds′}. In these coordinates the above equation reads ��(t,
)/�t = 0, yielding �=
h(
) for some function h. The initial condition fixes h and gives the solution as

�= (1 + 
)i ≡
(

f̃t

f̃s
(z − 1) + 1

)i
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where we recall (see (5)) f̃t ≡ e− ∫ t0 �(t ′) dt ′ . Then, we have, by series expansion and use of Cauchy
residues theorem

�(z, t) =
(

f̃t

f̃s
(z − 1) + 1

)i

=
i∑

n=0

(
i
n

)(
1 − f̃t

f̃s

)i−n (
z f̃t

f̃s

)n

Pi j (s, t) ≡ q( j, t) =
i∑

n=0

(
i

n

)(
1 − f̃t

f̃s

)i−n (
f̃t

f̃s

)n
1

2	
√−1

∫
S1

dz

z j+1−n

=

⎧⎪⎨
⎪⎩
(
i

j

)(
1 − f̃t

f̃s

)i− j (
f̃t

f̃s

) j

, 0� j�i

0 otherwise

This is equation (4).

APPENDIX B

Here we recover the distribution of {yt } (7). Again we simply write f̃ (t, p) ≡ f̃t . Recalling that
we define f̃0 = 1 the theorem of total probability yields that

P(yt = j) =∑
i

P(yt = j |yt0 = i)P(yt0 = i)

= ∑
i : j�i�I

(
i

j

)
f̃ j
t (1 − f̃t )

i− j

(
I

i

)
r i (1 − r)I−i

If I< j the sum is zero. Suppose then that j�I and let l ≡ i − j . One has

P(yt = j) =
(

f̃t r

1 − r

) j

(1 − r)I
I− j∑
l=0

(
l + j

j

)(
I

l + j

)(
r(1 − f̃t )

1 − r

)l

=
(

f̃t r

1 − r

) j

(1 − r)I
I− j∑
l = 0

(
l + j

j

)(
I

l + j

)(
�

1 − �

)l

where we introduce �≡ r(1 − f̃t )/1 − f̃t r . Thus,

P(yt = j)=
(

f̃t r

1 − r

) j
(1 − r)I

(1 − �)I− j

I− j∑
l = 0

(
l + j

j

)(
I

l + j

)
�l(1 − �)I− j−l
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To proceed further note that (
l + j

j

)(
I

l + j

)
=
(
I − j

l

)(
I

j

)

I− j∑
l=0

(
I − j

l

)
�l(1 − �)I− j−l = 1

and that

1 − � = 1 − r

1 − f̃t r

Thus, upon simplification, we finally get

P(yt = j) =
(
I

j

)
( f̃t r)

j (1 − f̃t r)
I− j

APPENDIX C

Here we give the explicit form of the function f (t, p) of (1)

f (t, p) = e−0.170111p(0.0128067 + 0.0388835e−0.0201t + 0.0768815e−0.0011t )

−e−0.0878945p(0.0024983e−10.0001t − 0.0124915e−2.0001t )

+
(
0.0212844

e4.35327p
+ 0.00920991

e0.147244p

)
(0.00699301

+ 0.00123877e−102.1t + 0.00100101e−100.13t

−0.251008e−10.0001t + 1.24001e−2.0001t + 1.00201e−0.0301t )

+
(−0.0110839

e1.11147p
+ 0.0110839

e0.123578p

)
(0.00699301

+ 0.992009e−10.0001t + 0.999002e−0.0301t )

−e−102.1t
0.0012475

(
0.0212844

e4.35327p
+ 0.00920991

e0.147244p

)2

0.0212844

e4.35327p
+ 0.00920991

e0.147244p
+ 0.0100737

e0.0878945p
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+
(−0.0171738

e0.566783p
+ 0.0171738

e0.0577835p

)
(0.00699301 + 0.992009e−10.0001t )

+0.0110729e0.871722p − 0.0221457e1.85961p + 0.0110729e2.84751p

e1.98319p + 1.54943e2.52788p − 1.e2.97109p − 1.54943e3.03688p

+ e−2.0001t −0.0125796e0.147244p − 0.00544327 e4.35327p

e0.235138p + 0.432707e4.44117p + 0.473291e4.50051p
+ e−10.0001t

×
(
0.0171567e0.181361p−0.0171567e0.690361p−0.0171567e1.16925p+0.0171567e1.67825p

1.e0.748144p+1.54943e1.29283p−1.e1.73604p−1.54943e1.80183p

+ 0.00251591e0.147244p + 0.00108865e4.35327p

e0.235138p + 0.432707e4.44117p + 0.473291e4.50051p

+ 0.00531579e0.382382p + 0.00460036e4.58841p

e4.73565p + 0.432707e8.94168p + 0.473291e9.00103p

)

+−0.0265789e0.382382p − 0.0230018e4.58841p − 0.00497652e8.79444p

e2.0001t (1.e4.73565p + 0.432707e8.94168p + 0.473291e9.00103p)
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