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Abstract

A Lie–Hamilton system is a nonautonomous system of first-order ordinary differential equa-
tions describing the integral curves of a t-dependent vector field taking values in a finite-
dimensional real Lie algebra of Hamiltonian vector fields with respect to a Poisson structure.
We provide new algebraic/geometric techniques to easily determine the properties of such
Lie algebras on the plane, e.g., their associated Poisson bivectors. We study new and known
Lie–Hamilton systems on R2 with physical, biological and mathematical applications. New
results cover Cayley–Klein Riccati equations, the here defined planar diffusion Riccati sys-
tems, complex Bernoulli differential equations and projective Schrödinger equations. Con-
stants of motion for planar Lie–Hamilton systems are explicitly obtained which, in turn,
allow us to derive superposition rules through a coalgebra approach.
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1 Introduction

A Lie system is a nonautonomous system of first-order ordinary differential equations whose
general solution can be written as a function, a superposition rule, of a generic family of partic-
ular solutions and some constants related to initial conditions [1, 2, 3, 4]. Superposition rules
significantly simplify the determination of general solutions for Lie systems as they reduce its
derivation to obtaining several particular solutions.

Examples of Lie systems are linear systems of differential equations, Riccati equations and
matrix Riccati equations [4, 5, 6]. Most nonautonomous systems of first-order ordinary differen-
tial equations are not Lie systems [4, 7, 8]. Notwithstanding, Lie systems play a very significant
rôle due to their relevant applications and geometric properties, e.g., matrix Riccati equations
are ubiquitous in control theory and superposition rules can be understood as a particular type
of flat connection [4, 6, 9].

Choose global coordinates {x, y} on R
2. To study Lie systems on R

2, we relate every nonau-
tonomous system

dx

dt
= f(t, x, y),

dy

dt
= g(t, x, y), (1.1)

where f, g : R3 → R are arbitrary functions, to the t-dependent vector field

X : R× R
2 ∋ (t, x, y) 7→ f(t, x, y)

∂

∂x
+ g(t, x, y)

∂

∂y
∈ TR

2 (1.2)

and vice versa. This permits us to use X to refer to both (1.1) and (1.2). The Lie–Scheffers
Theorem [1, 3] states that X is a Lie system if and only if

Xt(x, y) := X(t, x, y) =

l∑

i=1

bi(t)Xi(x, y)

for some t-dependent functions b1(t), . . . , bl(t) and vector fields X1, . . . ,Xl on R
2 spanning an

l-dimensional real Lie algebra V of vector fields: a Vessiot–Guldberg Lie algebra of X. If V is
isomorphic to a Lie algebra g, we say that X is a g-Lie system.

As an example of Lie systems, let us consider for the first time the family of nonautonomous
complex Bernoulli differential equations [10] of the form

dz

dt
= a1(t)z + a2(t)z

n, n /∈ {0, 1}, (1.3)

where z ∈ C and a1(t), a2(t) are arbitrary complex valued t-dependent functions. If a1(t)
and a2(t) are polynomial functions of eit and e−it, then (1.3) becomes a particular case of the
differential equations dz

dt = P (z, eit, e−it), where z ∈ C and P is any polynomial function of
their arguments. The number of periodic particular solutions of these latter equations has been
studied in [11]. Writing z = reiθ, a1(t) = aR1 (t) + iaI1(t) and a2(t) = aR2 (t) + iaI2(t) for real
t-dependent functions aR1 (t), aI1(t), aR2 (t), aI2(t), system (1.3) becomes

dr

dt
= aR1 (t) r + aR2 (t) rn cos[θ(n− 1)] − aI2(t) rn sin[θ(n− 1)],

dθ

dt
= aI1(t) + aR2 (t) rn−1 sin[θ(n− 1)] + aI2(t) rn−1 cos[θ(n− 1)],

(1.4)
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which is related to X = aR1 (t)X0 + aI1(t)X1 + aR2 (t)X2 + aI2(t)X3, where

X0 = r
∂

∂r
, X1 =

∂

∂θ
, X2 = rn cos[θ(n− 1)]

∂

∂r
+ rn−1 sin[θ(n− 1)]

∂

∂θ
,

X3 = −rn sin[θ(n− 1)]
∂

∂r
+ rn−1 cos[θ(n− 1)]

∂

∂θ

(1.5)

span a four-dimensional real Lie algebra, V CB, with commutation relations

[X0,X1] = 0, [X0,X2] = (n− 1)X2, [X0,X3] = (n− 1)X3,

[X1,X2] = (n− 1)X3, [X1,X3] = −(n− 1)X2, [X2,X3] = 0.
(1.6)

So, X takes values in the finite-dimensional Lie algebra V CB and becomes a Lie system.

The Lie–Scheffers Theorem implies that classifying Lie systems on a fixed manifold amounts
to determining all non-diffeomorphic finite-dimensional real Lie algebras of vector fields on it
[12, 13]. In the XIXth century, Lie accomplished the local classification of such Lie algebras
on the plane [14, 15]. González-López, Kamran and Olver reviewed Lie’s classification using
modern geometric techniques [12]. Their (GKO) classification divides finite-dimensional real Lie
algebras of planar vector fields into 28 non-diffeomorphic classes, which can be regarded as a
local classification of Lie systems on R

2 [12, 13]. For instance, we see from (1.6) that system (1.4)
admits a Vessiot–Guldberg Lie algebra V CB ≃ R

2
⋉ R

2 ≃ 〈X0,X1〉 ⋉ 〈X2,X3〉. According to
the GKO classification, all Lie algebras of this type are locally diffeomorphic to the Lie algebra
P4 (cf. [12, 13]). That is why we say that (1.4) is a Lie system of class P4.

In this work we focus on studying planar Lie systems possessing a Vessiot–Guldberg Lie
algebra of Hamiltonian vector fields with respect to a Poisson structure. It was shown in [13,
lemma 4.1] that this essentially amounts to having a Lie algebra of Hamiltonian vector fields
relative to a symplectic structure, a herafter called compatible symplectic structure. Among
the 28 classes of the GKO classification, only 12 consist of Lie algebras of Hamiltonian vector
fields. Table 1 (see section 2) summarizes the classification of finite-dimensional Lie algebras of
Hamiltonian vector fields on R

2 given in [13].

There is not a Lie algebra isomorphic to V CB in table 1. Consequently, V CB cannot be a
Lie algebra of Hamiltonian vector fields relative to any Poisson structure. This illustrates that
not every Lie system admits a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields with
respect to a Poisson structure [16, 17]. When a Lie system does, we call it a Lie–Hamilton (LH)
system [18]. The interest of LH systems relies on their appearance in physics, mathematics and
biology (cf. [13, 18, 19]). Additionally, their associated Poisson structures allow us to study and
to derive their constants of motion, superposition rules and Lie symmetries [18, 19].

As an example, consider the complex Bernoulli differential equations (1.4) with aR1 (t) = 0
and the Poisson bivector

Λ = X2 ∧X3 = r2n−1 ∂

∂r
∧ ∂

∂θ
(1.7)

turning the elements of V = 〈X1,X2,X3〉 into Hamiltonian vector fields. Indeed, the Hamilto-
nian functions for X1, X2, X3 read

h1 =
1

(2n − 2)r2n−2
, h2 =

sin[θ(n− 1)]

rn−1(n− 1)
, h3 =

cos[θ(n− 1)]

rn−1(n− 1)
, (1.8)

correspondingly. These functions along with h0 = 1 fulfill

{h1, h2}Λ = −(n− 1)h3, {h1, h3}Λ = (n − 1)h2, {h2, h3}Λ = h0, {h0, · }Λ = 0. (1.9)
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Hence, system (1.4) with aR1 (t) = 0 is a LH system as it is related to a t-dependent vector field
taking values in a Vessiot–Guldberg Lie algebra V of Hamiltonian vector fields relative to Λ.
Since V ≃ R ⋉ R

2 ≃ 〈X1〉 ⋉ 〈X2,X3〉, X1 ∧ X2 6= 0 and adX1 : Xi ∈ 〈X2,X3〉 7→ [X1,Xi] ∈
〈X2,X3〉 is not diagonalizable over R, we see in view of table 1 that the Lie algebra V belongs
to class P1 and V ≃ iso(2). Meanwhile, the LH algebra spanned by h1, h2, h3, h0 is isomorphic
to the centrally extended Euclidean algebra iso(2) (see also [13] for further details).

On the other hand, we recall that superposition rules for LH systems can be obtained in
an algebraic way by applying a Poisson coalgebra approach [19]. In contrast, other methods to
derive superposition rules require to integrate a Vessiot–Guldberg Lie algebra, e.g., the group
theoretical method [2], or to solve a family of PDEs [9]. Winternitz and coworkers have also
derived superposition rules for Lie systems in particular forms [2, 5]. The application of this
latter result for general Lie systems requires to map them into the canonical form for which
the superposition rule was obtained. The coalgebra procedure makes these transformations
unnecessary in many cases.

The structure of the paper is as follows. In section 2 we summarize the local classification
of Vessiot–Guldberg Lie algebras as of Hamiltonian vector fields on the plane performed in [13],
where the corresponding symplectic structures were derived by solving a system of PDEs. As a
first new achievement, we show in section 3 that such symplectic structures can be determined
through algebraic and geometric methods. Although our techniques are heavily based upon the
Lie algebra structure of Vessiot–Guldberg Lie algebras, they also depend on their geometric
properties as Lie algebras of vector fields. In particular, a new method to construct symplectic
structures for LH systems on the plane related to non-simple Vessiot–Guldberg Lie algebras is
described.

Next we remark that a Vessiot–Guldberg Lie algebra on the plane isomorphic to sl(2) can
be diffeomorphic to either P2, I3, I4 or I5, being I3 the only class which does not consist of
Hamiltonian vector fields for any Poisson bivector on R

2 (cf. [12]). The problem of determining
the existence of diffeomorphisms among sl(2)-Lie systems on the plane is addressed in section
4. As a second theoretical new result, we provide a new easily verifiable algebraic-geometric
criterium allowing one to determine the specific class of a Vessiot–Guldberg Lie algebra on R

2

isomorphic to sl(2) without finding a change of variables mapping it to a specific class as in [13].
Our new method is based on calculating an easily derivable geometric invariant: a hereafter
called Casimir tensor field.

To illustrate the statements of section 4, we retrieve some of the findings in [13] and classify
other sl(2)-LH systems on R

2. More specifically, we show in section 5 for the first time that
Cayley–Klein Riccati equations [20] comprise the three classes of sl(2)-LH systems and we study
in section 6 their relationships via diffeomorphisms to coupled Riccati equations [21], Milne–
Pinney equations [22], second-order Kummer–Schwarz equations [23] and planar diffusion Riccati
systems [24, 25].

In section 7, we demonstrate that systems described by t-dependent quadratic Hamiltonians,
e.g. t-dependent damped harmonic oscillators or particles under certain electric fields [26, 27],
and the second-order Riccati equations in Hamiltonian form [28, 29] can be analyzed through LH
systems of class P5 and they become equivalent up to a local diffeomorphism. Such systems admit
a t-dependent Hamiltonian function taking values in a Lie algebra of Hamiltonian functions
isomorphic to the referred to as two-photon algebra [30].

Certain projective Schrödinger equations are studied in section 8 where we prove that they
belong to the class P3, that is, they are so(3)-LH systems. This reveals the interest of LH
systems in geometric quantum mechanics.
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Additionally, we analyze h2-LH systems in section 9, where h2 stands for the two-dimensional
Heisenberg Lie algebra [13] which arises within the class I14A for r = 1. As new results we prove
that complex Bernoulli differential equations (1.3) with t-dependent real coefficients belong to
this class and, consequently, we establish their equivalence with generalized Buchdahl equa-
tions [31, 32, 33], appearing in Relativity, and t-dependent Lotka–Volterra systems [34, 35],
occurring in biology.

In section 10 we obtain several superposition rules for LH systems by following the Poisson
coalgebra approach [19]. With this aim, we, firstly, obtain t-independent constants of motion
for LH-systems through Casimir invariants (cf. table 2). And, secondly, we use them in order to
construct superposition rules for LH systems of classes P1, P5 and Ir=1

14A that were no considered
in [19].

Finally, a summary of all the specific LH systems considered throughout the paper (cf. ta-
ble 3) as well as some open problems are addressed in section 11.

2 Local classification of LH systems on the plane

In general, we hereafter assume all structures to be smooth and globally defined. We also
consider points where each Poisson bivector Λ has locally constant rank. This simplifies the
presentation and highlights our main results.

A generic point of a Lie algebra V of vector fields is a point around which the vector fields
of V span a regular distribution. We write domV for the set of generic points of V . Every Lie
algebra of planar vector fields is locally diffeomorphic around generic points to one of the 28
classes of vector fields of the GKO classification, which covers two subclasses called primitive (8
cases Px) and imprimitive (20 cases Ix) ones [12].

To determine which of the 28 classes can be considered as Vessiot–Guldberg Lie algebras of
Hamiltonian vector fields, a symplectic form

ω = f(x, y)dx ∧ dy

must be found so that each element Xi of a basis {X1, . . . ,Xl} of the Vessiot–Guldberg Lie
algebra under study becomes Hamiltonian (see [13] for details). In such a case, we say that ω
is compatible with the Vessiot–Guldberg Lie algebra. Note that each Xi is a Hamiltonian vector
field with respect to ω whenever the Lie derivative of ω relative to Xi vanishes, that is, LXiω = 0.
If ω exists, then all Xi become Hamiltonian vector fields and their corresponding Hamiltonian
functions hi are obtained by using the relation ιXiω = dhi. The symplectic form ω induces a
Poisson bracket on C∞(R2) of the form

{·, ·}ω : C∞
(
R
2
)
× C∞

(
R
2
)
∋ (f, g) 7→ Xgf ∈ C∞

(
R
2
)
, (2.1)

with Xg being the Hamiltonian vector field associated to the function g. In this way, the functions
h1, . . . , hl and their successive Lie brackets with respect to (2.1) span a finite-dimensional Lie
algebra of functions that we call a LH algebra of V .

It has been recently proven that the 8 + 20 classes of the GKO classification lead to 4 + 8
classes of finite-dimensional Lie algebras of Hamiltonian vector fields [13]. The final result is
summarized in table 1, where we detail the Lie algebra g isomorphic to the Vessiot–Guldberg Lie
algebra spanned by the vector fields Xi, an associated symplectic form ω and the corresponding
Hamiltonian functions hi.
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Table 1: The classification of the 12 finite-dimensional real Lie algebras of Hamiltonian vector fields on

R2. Note that g = g1 ⋉ g2 means that g is the direct sum (as linear subspaces) of g1 and g2, with g2

being an ideal of g. For I12, I14A and I16, we have j = 1, . . . , r while in I14B the index j = 2, . . . , r since

η1(x) ≡ 1. In all cases r ≥ 1. The elements of the basis of the Lie algebra P3 also admit Hamiltonian

functions h̄1 = h1 + 1/4, h2, h3, respectively, spanning a LH algebra isomorphic to so(3).

# g Basis of vector fields Xi Hamiltonian functions hi ω

P1 iso(2) ∂x, ∂y, y∂x − x∂y y, −x, 1
2
(x2 + y2), 1 dx ∧ dy

P2 sl(2) ∂x, x∂x + y∂y, (x2 − y2)∂x + 2xy∂y −1

y
, −x

y
, −x2 + y2

y

dx ∧ dy

y2

P3 so(3) y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y,
−1

2(1 + x2 + y2)
,

y

1 + x2 + y2
,

dx ∧ dy

(1 + x2 + y2)2

2xy∂x + (1 + y2 − x2)∂y − x

1 + x2 + y2
, 1

P5 sl(2)⋉R
2 ∂x, ∂y, x∂x − y∂y, y∂x, x∂y y, −x, xy, 1

2
y2, − 1

2
x2, 1 dx ∧ dy

I1 R ∂x

∫ y
f(y′)dy′ f(y)dx ∧ dy

I4 sl(2) ∂x + ∂y, x∂x + y∂y, x2∂x + y2∂y
1

x− y
,

x+ y

2(x− y)
,

xy

x− y

dx ∧ dy

(x− y)2

I5 sl(2) ∂x, x∂x + 1
2
y∂y, x2∂x + xy∂y − 1

2y2
, − x

2y2
, − x2

2y2

dx ∧ dy

y3

I8 iso(1, 1) ∂x, ∂y, x∂x − y∂y, y, −x, xy, 1 dx ∧ dy

I12 R
r+1 ∂y, ξ1(x)∂y, . . . , ξr(x)∂y −

∫ x
f(x′)dx′,−

∫ x
f(x′)ξj(x

′)dx′ f(x)dx ∧ dy

I14A R ⋉ R
r ∂x, η1(x)∂y, . . . , ηr(x)∂y y, −

∫ x
ηj(x

′)dx′, 1 /∈ 〈ηj〉 dx ∧ dy

I14B R ⋉ R
r ∂x, ∂y, η2(x)∂y, . . . , ηr(x)∂y y, −x, −

∫ x
ηj(x

′)dx′, 1 dx ∧ dy

I16 h2⋉R
r+1 ∂x, ∂y, x∂x − y∂y, x∂y, . . . , x

r∂y y, −x, xy, − xj+1

j + 1
, 1 dx ∧ dy

We remark that in some cases the functions h1, . . . , hl do not span by themselves a Lie
algebra of Hamiltonian functions and a central generator h0 = 1 must be added in such a
manner that 〈h1, . . . , hl, h0〉 form a central extension of the initial Vessiot–Guldberg Lie al-
gebra. For instance, the case P1 from table 1 corresponds to the two-dimensional Euclidean
algebra iso(2) ≃ 〈X1,X2,X3〉, but the Hamiltonian functions h1, h2, h3, h0 = 1 span the cen-
trally extended Euclidean algebra iso(2) (as in (1.9)). A similar fact arises in classes P3 ≃ so(3),
P5 ≃ sl(2) ⋉ R

2, I8 ≃ iso(1, 1) (the (1 + 1)-dimensional Poincaré algebra), I14B ≃ R ⋉ R
r and

I16 ≃ h2⋉R
r+1. Among them, only the family P3 ≃ so(3) is a simple Lie algebra so that h0 = 1

gives rise to a trivial central extension, namely the LH algebra is so(3)⊕R; otherwise the central
extension is a non-trivial one and it cannot be ‘removed’ (see [13] for details).

In this respect, notice that the appearance of a non-trivial central extension is the difference
between the families I14B and I14A. We also recall that the LH algebra corresponding to the
class P5, that is sl(2) ⋉R2, is isomorphic to the two-photon Lie algebra h6 (see [30, 36] and
references therein) and, therefore, to the (1 + 1)-dimensional centrally extended Schrödinger Lie
algebra [37].

We stress that the Lie algebra sl(2) appears three times (classes P2, I4 and I5) which means
that there are different LH systems sharing isomorphic Vessiot–Guldberg Lie algebras that are
non-diffeomorphic, that is, there exists no diffeomorphism mapping the elements of one into
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the other. In other words, only LH systems belonging to each class can be related through
a t-independent change of variables. We shall explicitly apply this property throughout the
paper. In section 4 we develop new criteria to easily determine to which class is diffeomorphic
a Vessiot–Guldberg Lie algebra isomorphic to sl(2) on the plane.

3 Determination of non-simple LH systems

The standard approach for determining a symplectic form ω turning the elements of a Vessiot–
Guldberg Lie algebra V into local Hamiltonian vector fields consists in solving the family of
PDEs in ω of the form LXiω = 0 with Xi being any element of V [13]. Meanwhile, we here
show how we can derive ω out of the Lie algebra and geometric structure of V for non-simple
planar Vessiot–Guldberg Lie algebras not diffeomorphic either to the trivial Lie algebra I1 or to
the Abelian one I12.

Given an m-dimensional manifold M , a multivector field on M is an element of the C∞(M)-
module X•M of totally antisymmetric contravariant tensor fields on M of any order. Totally
k-contravariant multivector fields are called k-multivector fields and, when k = 2, bivector fields.
We write XkM for the C∞(M)-module of k-multivector fields, X0M stands for C∞(M) and
we fix XkM = {0} for k > dimM and k < 0. The space X•M becomes a Z-graded algebra
with respect to the decomposition X•M =

⊕
i∈ZX

iM when endowed with the C∞(M)-bilinear
exterior product ∧ : X•M × X•M → X•M satisfying

(P ∧Q)(θ1, . . . , θp+q) :=
∑

σ∈Sp+q

(−1)sign(σ)P (θσ(1), . . . , θσ(p))Q(θσ(p+1), . . . , θσ(p+q)),

with Sp+q being the permutation group of p+ q elements, P ∈ XpM , Q ∈ XqM , and θ1, . . . , θp+q

being arbitrary one-forms on M [16, 17].

The natural Lie algebra structure on the space X1M of vector fields on M can be extended
to an R-bilinear operation [ · , · ]SN : X•M ×X•M → X•M by requiring X•M to become a graded
Lie algebra relative to the decomposition X•M =

⊕
i∈Z X

iM and considering each element of
XiM to have degree i− 1. The resulting R-bilinear operation is called the Schouten–Nijenhuis
bracket [16]. A bivector field Λ satisfying that [Λ,Λ]SN = 0 is called a Poisson bivector.

Consider a Lie algebra g. Let (T (g),⊗) be the tensorial algebra relative to the linear space
g and let R be the ideal of T (g) generated by the elements [v1, v2] − (v1 ⊗ v2 − v2 ⊗ v1) with
v1, v2 ∈ g. We call U(g) := T (g)/R a universal enveloping Lie algebra associated to g. Observe
that g can naturally be considered as a subspace of U(g). Since R is an ideal, the tensorial
product of (T (g),⊗) gives rise to an R-bilinear product ⊗̃ : U(g) × U(g) → U(g) turning U(g)
into an R-algebra (U(g), ⊗̃). The Lie algebra structure of g can be extended to U(g) by requiring
the extension to become a derivation on each entry with respect to the product in (U(g), ⊗̃).
This makes U(g) into a Lie algebra (U(g), [·, ·]U(g)) [38]. A Casimir element is an element of
U(g) commuting with every element of g, namely an element in the center of (U(g), [·, ·]U(g)).

Repeating the same process as above for R being the ideal of T (g) generated by the elements
v1⊗v2−v2⊗v1 we obtain the symmetric algebra S(g) of g. The Lie algebra structure of g can be
extended to S(g) turning this space into a Poisson algebra. As before, g is naturally embedded
within S(g). Given a Lie algebra monomorphism ρ : g → X1M mapping a basis {v1, . . . , vl} of
g into the vector fields X1, . . . ,Xl, respectively, the linear morphism λ : S(g) → U(g) mapping
λ(vi1 · . . . · vil) = 1/l!

∑
σ∈Sl

Xσ(i1)⊗̃ . . . ⊗̃Xσ(il) is a linear isomorphism [19, 39]. This morphism,
the symmetryzer morphism, allows us to interpret the elements of U(g) as symmetric tensorial
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elements of T (g). Moreover, the above mentioned linear morphism maps the center of S(g)
into the center of U(g). Hence, if an element of g commutes with the whole S(g) according
to the Lie algebra structure of S(g), then it also commutes with the whole U(g) respect to its
corresponding Lie algebra structure.

Let V be a Vessiot–Guldberg Lie algebra of vector fields on M . We define the linear subspace
V ∧ V := {X ∧ Y |X,Y ∈ V } ⊂ X2M . Since LX(T1 ⊗ T2) = LXT1 ⊗ T2 + T1 ⊗ LXT2 for every
X ∈ V , T1, T2 ∈ X•M , then the Lie derivative is a derivation relative to the exterior product
of multivector fields and we can define a Lie algebra representation ϕV : X ∈ V 7→ LX ∈
End(V ∧ V ) for LX : Λ ∈ V ∧ V 7→ LXΛ ∈ V ∧ V . Moreover, due to the graded Lie algebra
structure of X•M , the Schouten–Nijenhuis bracket of two bivector fields is a 3-vector field. Since
3-vector fields on R

2 vanish everywhere, then the Schouten–Nijenhuis bracket of two bivector
fields on R

2 is zero and all elements of V ∧ V are Poisson bivectors.

Proposition 3.1. Let V be a Vessiot–Guldberg Lie algebra of planar vector fields. The vector
fields of V are Hamiltonian with respect to a bivector field Λ ∈ V ∧V \{0} if and only if V admits
a one-dimensional trivial Lie algebra representation within V ∧ V .

Proof. If V is a Vessiot–Guldberg Lie algebra of Hamiltonian planar vector fields with respect to
a bivector field Λ ∈ V ∧ V \{0}, then LXΛ = 0 for every X ∈ V and Λ spans a one-dimensional
trivial Lie algebra representation of V . Conversely, if V acts trivially and irreducibly via ϕV on
a one-dimensional vector subspace W ⊂ V ∧ V , then the Lie derivatives of every Λ ∈ W\{0}
with respect to the elements of V vanish. As V consists of planar vector fields by assumption
and Λ is a non-zero bivector field, then the vector fields of V are Hamiltonian relative to Λ.

Note 3.2. If Λ is a zero planar bivector field, then LXΛ = 0 for every vector field X 6= 0
and Λ is a Poisson bivector. Nevertheless, the only Hamiltonian vector fields for a zero Poisson
bivector are the zero vector fields. So, X is not a Hamiltonian vector field relative to Λ. That
is why LXΛ = 0 implies that X is Hamiltonian provided Λ 6= 0.

Note 3.3. The existence of trivial one-dimensional representations of V within V ∧ V depends
on the Lie algebra structure of V and also on its geometric structure as a Lie algebra of vector
fields. Indeed, isomorphic Vessiot–Guldberg Lie algebras may admit a different number of trivial
representations in V ∧V . For instance, V := 〈∂x, ∂y〉 ≃ R

2 gives rise to a unique one-dimensional
representation 〈∂x ∧ ∂y〉 = V ∧ V , while V := 〈∂x, y∂x〉 ≃ R

2 does not give rise to any such a
representation because V ∧ V = {0}.

Example 3.4. Consider the Lie algebra V := I14B . In view of table 1, the Lie derivatives of
Λ := ∂x ∧ ∂y ∈ V ∧ V with respect to every element of I14B vanish. Indeed,

[∂x, ∂x ∧ ∂y]SN = [∂y, ∂x ∧ ∂y]SN = 0, [ηj(x)∂y, ∂x ∧ ∂y]SN = −∂ηj
∂x

∂y ∧ ∂y = 0, j = 2, . . . , r.

This turns W = 〈∂x ∧ ∂y〉 into a trivial one-dimensional representation of V . Proposition 3.1
entails that V consists of Hamiltonian vector fields relative to Λ. This retrieves the result of
table 1, where we find the symplectic structure, dx ∧ dy, induced by Λ. Moreover, every Lie
algebra I14A can be extended to a Lie algebra I14B by adding the vector field ∂y. Applying the
above procedure, we obtain the same canonical symplectic structure turning the elements of V
into Hamiltonian vector fields.

Example 3.5. Let us turn to the Lie algebra V := I16. From table 1, we have

[∂x, ∂x ∧ ∂y]SN = 0, [x∂x − y∂y, ∂x ∧ ∂y]SN = −∂x ∧ ∂y + ∂x ∧ ∂y = 0,

[∂y, ∂x ∧ ∂y]SN = 0, [xj∂y, ∂x ∧ ∂y]SN = −jxj−1∂y ∧ ∂y = 0, j = 1, . . . , r.
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Hence, W = 〈∂x∧∂y〉 ⊂ V ∧V is a trivial one-dimensional representation of V . As a consequence,
∂x ∧ ∂y turns all the elements of W into Hamiltonian vector fields. This is equivalent to the
result given in table 1.

The question now is how to determine one-dimensional trivial representations of V in V ∧V .
We next devise a method to obtain them for most of the non-simple Lie algebras of table 1.

Theorem 3.6. If V is a planar Vessiot–Guldberg Lie algebra admitting a two-dimensional ideal
I such that I ∧ I 6= {0} and the elements of V act on I by traceless operators, namely the
mappings ϑX : Y ∈ I 7→ [X,Y ] ∈ I are traceless for each X ∈ V , then V becomes a Lie algebra
of Hamiltonian vector fields with respect to every element of I ∧ I\{0}.

Proof. If I ∧ I 6= {0}, the two-dimensional ideal I = 〈Y1, Y2〉 gives rise to a one-dimensional
space I ∧ I. Since I is an ideal, the Lie brackets of elements X ∈ V with elements of I belong
to I. This ensures that the mappings ϑX are well defined: the Lie derivative with respect to
every element of V of an element of I ∧ I belongs to I ∧ I. As I ∧ I 6= {0} and V consists of
planar vector fields, then Y1 ∧ Y2 6= 0 and we can define the dual one-forms {θ1, θ2} to {Y1, Y2}.
Moreover, θ1 ∧ θ2 is a volume form on R

2 and we have that

LX(Y1 ∧ Y2) = (LXY1) ∧ Y2 + Y1 ∧ (LXY2)

= [(θ1 ∧ θ2)(ϑXY1, Y2) + (θ1 ∧ θ2)(Y1, ϑXY2)]Y1 ∧ Y2

= Tr(ϑX)Y1 ∧ Y2

= 0.

Since Λ := Y1 ∧ Y2 6= 0 is a planar bivector field, then X becomes a Hamiltonian vector field
relative to Λ (or to any non-zero bivector field of V ∧ V ).

Note 3.7. Observe that the condition I ∧ I 6= {0} is unavoidable so as to ensure that V admits
a compatible Poisson bivector within V ∧ V \{0}. For instance, the Lie algebra I19 with r = 1
of vector fields of the GKO classification (see [12, 13]) takes the form I19 = 〈∂x, ∂y, x∂y, 2x∂x +
y∂y, x

2∂x + xy∂y〉. Note that I := 〈∂y, x∂y〉 ≃ R
2 is an ideal of I19 and the elements of I19 act

on I as traceless operators. Hence, I19 satisfies all conditions of theorem 3.6 apart from the fact
that I ∧ I = {0}. In view of table 1, this Lie algebra does not admit a compatible symplectic
structure. Hence, the lack of condition I ∧ I 6= {0} makes theorem 3.6 to be false.

Let us now show how the above statement allows us to determine many of the Poisson
bivector structures appearing in the table 1.

Example 3.8. The Lie algebra P1 admits a two-dimensional ideal I = 〈∂x, ∂y〉 satisfying that
I ∧ I 6= {0}. Moreover, ∂x, ∂y, y∂x −x∂y act as traceless operators on I. In view of theorem 3.6,
the basis ∂x∧∂y of I∧I becomes a Poisson bivector turning P1 into a Lie algebra of Hamiltonian
vector fields. Observe that this Poisson bivector gives rise to a symplectic form ω = dx ∧ dy,
which is the one described in table 1.

Example 3.9. Let us turn to the Lie algebra P5. We have that I = 〈∂x, ∂y〉 is an ideal of P5

with I ∧ I 6= 0 and it is straightforward to prove that all elements of P5 act as traceless linear
operators on I. Hence, theorem 3.6 ensures that P5 is a Lie algebra of Hamiltonian vector fields
relative to the basis Λ := ∂x ∧ ∂y of I ∧ I. As in the previous example, the symplectic form
associated to Λ is the canonical one described in table 1.
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Example 3.10. The Lie algebra I8 possesses an ideal I = 〈∂x, ∂y〉 with I ∧ I 6= {0} and all
the elements of I8 act on I as traceless mappings. Hence, theorem 3.6 ensures that I8 is a Lie
algebra of Hamiltonian vector fields relative to the basis Λ := ∂x ∧ ∂y of I ∧ I.

Example 3.11. Consider the Lie algebra of the class Ir=2
14B given by V := 〈∂x, ∂y, x∂y〉. This Lie

algebra possesses an ideal I = 〈∂x, ∂y〉 satisfying that I ∧ I 6= {0}. Moreover, the elements of V
act on I as traceless operators. Hence, theorem 3.6 ensures that this Lie algebra again consists
of Hamiltonian vector fields relative to Λ := ∂x ∧ ∂y.

As a practical application, let us apply theorem 3.6 to the subalgebra V appearing in the
study of Bernoulli differential equations (1.4) with aR1 (t) = 0. Observe that V = 〈X1,X2,X3〉,
where X1,X2,X3 are given in (1.5), admits an ideal I = 〈X2,X3〉. We also have X2 ∧X3 6= 0
and the elements of V act on I as traceless operators. So, V satisfies the conditions given in
theorem 3.6 and there exists a non-zero Poisson bivector Λ := X2 ∧X3 ∈ V ∧ V given by (1.7)
turning the elements of V into Hamiltonian vector fields. Thus, Bernoulli differential equations
(1.4) with aR1 (t) = 0 are LH systems and a compatible symplectic structure can be derived out
of V .

Note that the Lie algebra structure of Vessiot–Guldberg Lie algebras does not characterize
by itself the existence of a compatible symplectic structure. This is evident from the GKO
classification [12, 13], where isomorphic Vessiot–Guldberg Lie algebras admit different families
of compatible symplectic structures depending on whether they are diffeomorphic or not.

4 Determination of sl(2)-Lie systems

As already commented, sl(2)-Lie systems on the plane can belong to one of the four non-
diffeomorphic classes P2, I3, I4 and I5. This is related to the fact that the Lie group actions
induced by integrating such Lie algebras are not equivariant under a diffeomorphism on R

2.

We now provide a method to determine to which class of the GKO classification belongs a Lie
algebra V of planar vector fields isomorphic to sl(2). When the vector fields of V additionally
generate a distribution of rank one, V must be diffeomorphic to I3 since this is the only Lie
algebra, among I3, I4, P2 and I5, satisfying this property (cf. [12]). The problem to be solved is
therefore to classify V when its vector fields generate a distribution of rank two.

Although in [13] several diffeomorphisms among some sl(2)-LH systems on the plane, and
their corresponding Vessiot–Guldberg Lie algebras, were explicitly determined, we here provide
a new easily verifiable criterium to ensure to which specific class a planar Vessiot–Guldberg Lie
algebra isomorphic to sl(2) is diffeomorphic to. This is done with no need of deriving the specific
diffeomorphism.

Lemma 4.1. Let V be a Vessiot–Guldberg Lie algebra isomorphic to sl(2). We define S2(V ) to
be the space of 2-contravariant tensor fields spanned by the linear combinations of the tensor fields
in the form X⊗Y +Y ⊗X, with X,Y ∈ V , and we write S2(sl(2)) for the space of polynomials of
second order in S(sl(2)). Choose basis {v1, v2, v3} and {X1,X2,X3} of sl(2) and V , respectively,
with the same structure constants. This gives rise to an isomorphism T : sl(2) ≃ V and a
morphism of sl(2)-modules

Ψ : S2(sl(2)) ∋
3∑

1=i≤j

cijvivj 7→
3∑

1=i≤j

cij(Xi ⊗Xj + Xj ⊗Xi) ∈ S2(V ),
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i.e., Ψ is linear and Ψ
(
{v, P}S(sl(2))

)
= LT (v)Ψ(P ) for every v ∈ sl(2) and P ∈ S2(sl(2)). If V

is diffeomorphic to either P2, I4 or I5, then Ψ is an isomorphism. If V is diffeomorphic to I3,
then Ψ is not an isomorphism.

Proof. It is immediate that Ψ is linear by construction. Let us prove that Ψ is a morphism of
sl(2)-modules. Assuming {vi, vj}S(sl(2)) =

∑3
k=1 cijkvk, we obtain [Xi,Xj ] =

∑3
k=1 cijkXk and

Ψ
(
{vk, vivj}S(sl(2)

)
= Ψ

(
{vk, vi}S(sl(2))vj + vi{vk, vj}S(sl(2))

)
= Ψ

(
3∑

l=1

ckilvlvj +
3∑

l=1

vickjlvl

)

=

3∑

l=1

ckil(Xl ⊗Xj + Xj ⊗Xl) +

3∑

l=1

ckjl(Xi ⊗Xl + Xl ⊗Xi)

= (LXk
Xi) ⊗Xj + Xj ⊗ (LXk

Xi) + Xi ⊗ (LXk
Xj) + (LXk

Xj) ⊗Xi

= LXk
(Xi ⊗Xj + Xj ⊗Xi) = LT (vk)Ψ(vivj), ∀k, i, j = 1, 2, 3.

Using the linearity of Ψ and the bilinearity of the Poisson bracket in S2(sl(2)), we obtain that Ψ
is an sl(2)-module morphism. If V is either P2, I4 or I5 is straightforward to prove the linearly
independence over R of Ψ(v21),Ψ(v22),Ψ(v23),Ψ(v1v2),Ψ(v1v3),Ψ(v2v3). Since dimS2(sl(2)) =
dimS2(V ) = 6, then Ψ is an isomorphism. This fact does not change under diffeomorphisms
and so it applies to any Lie algebra V diffeomorphic to either P2, I4 and I5.

If V is I3 = 〈X1 := ∂x,X2 := x∂x,X3 := x2∂x〉, then S2(V ) is spanned by {xα∂x ⊗ ∂x : α =
0, . . . , 4}. In particular,

Ψ(v1v3 − v22) = X1 ⊗X3 + X3 ⊗X1 − 2X2 ⊗X2 = 0

and Ψ is not an isomorphism because dim ker Ψ = 1. These facts do not change under diffeo-
morphisms so they remain true for any V diffeomorphic to I3.

Lemma 4.2. A Vessiot–Guldberg Lie algebra V diffeomorphic to either P2, I4 or I5 admits an
essentially unique, namely up to proportional constant, R ∈ S2(V )\{0} such that LXR = 0 for
every X ∈ V .

Proof. It is well known that there exists only one quadratic Casimir (up to a proportional
constant) in U(sl(2)). The sl(2)-module isomorphism λ : S(sl(2)) ≃ U(sl(2)) maps the Casimir
C into an element of S2(sl(2)). Using the sl(2)-module isomorphism S2(V ) ≃ S2(sl(2)), we obtain
that there exists essentially one element of S2(V )\{0} whose Lie brackets with the elements of V
vanish. Thus, there exists essentially a unique, i.e., up to proportional constant, R ∈ S2(V )\{0}
such that LXR = 0 for every X ∈ V .

Definition 4.3. Given a finite-dimensional real Lie algebra of vector fields V , we call Casimir
tensor field of V an element R ∈ S2(V ) such that LXR = 0 for every X ∈ V .

Theorem 4.4. Let V be a Vessiot–Guldberg Lie algebra diffeomorphic to either P2, I4 or I5.
Let R be a non-zero Casimir tensor field for V . Writing R =

∑2
α,β=1R

αβ∂α ⊗ ∂β with ∂1 = ∂x
and ∂2 = ∂y, we define

I(V ) := sign
(

det(Rαβ(x))
)
, ∀x ∈ domV,

where domV is the set of generic points of V . If I(V ) > 0, then V is locally diffeomorphic
to P2; when I(V ) < 0, then V is locally diffeomorphic to I4; if I(V ) = 0, then V is locally
diffeomorphic to I5.
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Proof. For the Lie algebras of vector fields P2, I4 and I5 and using their corresponding bases
{X1,X2,X3} detailed in table 1, we get that

R =
1

2
(X1 ⊗X3 + X3 ⊗X1) −X2 ⊗X2 (4.1)

satisfies that LXiR = 0 for i = 1, 2, 3 and R 6= 0. In view of lemma 4.2, this is essentially the
only element of S2(V )\{0} satisfying this property. It is a non-zero Casimir tensor field. After a
straightforward calculation and using that dom P2 = R

2
y 6=0, dom I4 = R

2
x 6=y and dom I5 = R

2
y 6=0

(see [13]), we obtain

R(P2) = −y2[∂x ⊗ ∂x + ∂y ⊗ ∂y] ⇒ I(P2) = 1, R(I5) = −y2

4
[∂y ⊗ ∂y] ⇒ I(I5) = 0,

R(I4) =
1

2
(x− y)2[∂x ⊗ ∂y + ∂y ⊗ ∂x] ⇒ I(I4) = −1.

Observe that the value of I(V ) is independent of the point x ∈ domV where we evaluate
det(Rαβ(x)) for the Lie algebras P2, I4 and I5. Hence, I(V ) is well defined. Moreover, since I(V )
depends on the 2× 2 matrix of coefficients of R, which is unique up to a non-zero multiplicative
constant, we have that the value of I(V ) does not depend on the non-null chosen R.

Let us now prove that I(V ) is invariant under diffeomorphisms and, therefore, two diffeo-
morphic Lie algebras have the same I(V ). Given a local diffeomorphism φ : R

2 → R
2, we

can write that φ∗R =
∑2

α,β=1 ḡ
αβ∂α ⊗ ∂β =

∑2
µ,ν=1 g

µνAα
µA

β
ν∂α ⊗ ∂β, where A = (Aλ

σ) is the
Jacobian matrix of the diffeomorphism in the initial and final basis {∂x, ∂y}. In consequence,
det ḡαβ = detA2 det gαβ and I(V ) is invariant under diffeomorphisms.

If V is diffeomorphic to one of the Lie algebras P2, I4 or I5, then the element R for V is
essentially unique and it must be mapped via a diffeomorphism onto an R 6= 0 corresponding to
P2, I4 or I5. Since I(V ) is invariant under diffeomorphisms, we obtain that I(V ) is the same as
the one for the Lie algebra to which is diffeomorphic to.

In the next two sections we apply the above results in the study of planar sl(2)-LH systems
and their equivalence via diffeomorphisms.

5 Cayley–Klein Riccati equations

Let us consider the so-called complex Riccati equations, namely

dz

dt
= a0(t) + a1(t)z + a2(t)z2, z ∈ C, (5.1)

with arbitrary t-dependent real coefficients a0(t), a1(t) and a2(t). These equations have several
applications from a mathematical and physical point of view [40, 41, 42]. In fact, these can
be mapped into a particular type of planar Riccati equation [43, 44] and they also appear in
the study of dissipative and irreversible systems [45]. We hereafter propose a generalization of
Riccati equations over the so-called split-complex and dual-Study numbers.

Consider the real plane with coordinates {u, v} and an ‘additional’ unit ι such that ι2 ∈
{−1,+1, 0}. Next we define z := u + ιv for (u, v) ∈ R

2. Assuming that ι commutes with
real numbers, we can write z2 = u2 + ι2v2 + 2ιuv. In this way, the number z comprises three
possibilities [46]:
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• If ι2 = −1, we are dealing with the usual complex numbers ι := i and z ∈ C.

• Setting ι2 = +1 we obtain the so-called split-complex numbers z ∈ C
′. The additional unit

is usually known as the double or Clifford unit.

• Meanwhile, if we assume ι2 = 0, then z is known as a dual or Study number, z ∈ D.

With these ingredients we shall call the Cayley–Klein Riccati equation [20] the generalization
of the complex Riccati equation (5.1) to z := u + ιv ∈ {C,C′,D} which, for real t-dependent
coefficients a0(t), a1(t), a2(t), gives rise to the system

du

dt
= a0(t) + a1(t)u + a2(t)(u2 + ι2v2),

dv

dt
= a1(t)v + a2(t)2uv. (5.2)

Let us prove that (5.2) is a Lie system for every possible value of ι. The system (5.2) is
associated with the t-dependent vector field given by

X = a0(t)X1 + a1(t)X2 + a2(t)X3, (5.3)

where

X1 =
∂

∂u
, X2 = u

∂

∂u
+ v

∂

∂v
, X3 = (u2 + ι2v2)

∂

∂u
+ 2uv

∂

∂v
, (5.4)

span a Vessiot–Guldberg Lie algebra Vι ≃ sl(2) with commutation relations given by

[X1,X2] = X1, [X1,X3] = 2X2, [X2,X3] = X3. (5.5)

Consequently, X takes values in a finite-dimensional Lie algebra Vι of vector fields and (5.2)
becomes a Lie system. Let us prove that X is also a LH system.

Proposition 5.1. The Cayley–Klein Riccati equation with t-dependent real coefficients (5.2) is
a LH system for each value of ι. It admits a Vessiot–Guldberg Lie algebra, Vι, which is locally
diffeomorphic around points of domVι to P2 when ι2 = −1, to I4 when ι2 = 1, and to I5 when
ι2 = 0.

Proof. Since the Vessiot–Guldberg Lie algebra Vι for Cayley–Klein Riccati equations is spanned
by the vector fields (5.4) and their commutation relations are given by (5.5), it turns out that
a Casimir tensor field for Vι is given by (4.1). Substituying (5.4) in (4.1), we obtain that

R = ι2v2∂u ⊗ ∂u − v2∂v ⊗ ∂v ⇒ I(Vι) = − sign(ι2)

for points in domVι. The vector fields of (5.4) span a distribution of rank 2, so Vι must be
diffeomorphic to one of the Lie algebras P2, I4, I5. From table 1 we obtain that all these Lie
algebras consist of Hamiltonian vector fields. Thus, all Cayley–Klein Riccati equations with real
t-dependent coefficients are LH systems. Finally, we see in view of theorem 4.4 that Vι is locally
diffeomorphic to P2 for ι2 = −1, to I4 for ι2 = 1, and to I5 for ι2 = 0.

Proposition 5.1 allows us to classify the Vessiot–Guldberg Lie algebra of Cayley–Klein equa-
tions according to the value of ι2. Notice that complex Riccati equations (5.1) are just the
Cayley–Klein Riccati equations for ι2 = −1 and the vector fields (5.4) coincide with the basis
of vector fields of P2 given in table 1 provided that {x := u, y := v}. This suggests us to call
split-complex Riccati equations and dual-Study Riccati equations the Cayley–Klein equations

13



for ι2 = 1 and ι2 = 0, respectively. Next, we make use of this result and table 1 to determine
the associated symplectic structure for these two latter cases.

Consider the case ι2 = 1 and define the new variables {x, y} given by

x := u + v, y := u− v, u = 1
2(x + y), v = 1

2 (x− y).

In the new coordinate system, the vector fields (5.4) take the form of the basis of I4 given in
table 1 such that dom I4 = R

2
x 6=y = R

2
v 6=0. Writing the compatible symplectic two-form and

the associated Hamiltonian functions for the basis of I4 given in table 1 in the variables {u, v},
we obtain that X1,X2,X3 are Hamiltonian vector fields with Hamiltonian functions h1, h2, h3
relative to the symplectic form ω with

ω = −du ∧ dv

2v2
, h1 =

1

2v
, h2 =

u

2v
, h3 =

u2 − v2

2v
.

Assume now ι2 = 0 and v > 0. The case v < 0 can be studied analogously giving a similar
result. We define new variables {x, y} of the form

x := u, y :=
√
v, u = x, v = y2.

By writing the vector fields (5.4) in the new variables, we obtain the basis of vector fields
appearing in the Lie algebra I5 ≃ sl(2) of table 1 with dom I5 = R

2
y 6=0 = R

2
v 6=0. Hence in the

variables {u, v}, we find that

ω =
du ∧ dv

2v2
, h1 = − 1

2v
, h2 = − u

2v
, h3 = −u2

2v
.

We remark that, independently of the value of ι2, the Hamiltonian functions h1, h2, h3 satisfy
(see (5.5))

{h1, h2}ω = −h1, {h1, h3}ω = −2h2, {h2, h3}ω = −h3.

Hence, (〈h1, h2, h3〉, {·, ·}ω) is always a LH algebra for the system (5.2) isomorphic to sl(2) and

h = a0(t)h1 + a1(t)h2 + a2(t)h3

is a t-dependent Hamiltonian function associated to the t-dependent vector field (5.3) and,
therefore, to the system (5.2).

We also stress that the Cayley–Klein system (5.2) for ι2 ∈ {0, 1} appears in a method to
map diffusion-type equations into a simpler form which can be easily integrated [24, 25].

6 Other planar sl(2)-LH systems

In this section we present some sl(2)-LH systems of mathematical and physical interest, namely,
coupled Riccati, Milne–Pinney (which comprises the Smorodinsky–Winternitz system and the
harmonic oscillator, both with a t-dependent frequency), second-order Kummer–Schwarz and
planar diffusion equations. Furthermore, we also study, according to table 1, the equivalence
among them and the Cayley–Klein Riccati equations introduced in the previous section, that
is, we establish, by applying the results of section 4, which of all of the above systems are
locally diffeomorphic. To keep notation simple, hereafter we say that a second-order differential
equation is a LH system when the first-order system obtained from it by adding a new variable
y := dx/dt, is a LH one.
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6.1 Coupled Riccati differential equations

Consider the system of coupled differential Riccati equations [21]

dx

dt
= a0(t) + a1(t)x + a2(t)x2,

dy

dt
= a0(t) + a1(t)y + a2(t)y

2, (6.1)

which appears as a particular case of systems of Riccati equations studied in [19, 47]. This
system can be expressed as a t-dependent vector field (5.3) where

X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2

∂

∂x
+ y2

∂

∂y
,

so that these vector fields exactly reproduce those given in table 1 for the class I4 which, in turn,
means that this system is locally diffeomorphic to the split-complex Riccati equation, namely
(5.2) with ι2 = 1.

6.2 Milne–Pinney equations

The Milne–Pinney equation [22, 48, 49] has the following expression

d2x

dt2
= −ω2(t)x +

c

x3
, (6.2)

where ω(t) is any t-dependent function and c is a real constant. We remark that this system is,
in fact, the one-dimensional Ermakov system as well as the Smorodinsky–Winternitz system [50]
with a t-dependent frequency. The c-term can be understood as a Rosochatius potential (or a
centrifugal barrier when c > 0) in its Hamiltonian form [51]. When c vanishes, the system (6.2)
reduces to the harmonic oscillator with a t-dependent frequency.

Next, by introducing y := dx/dt, we rewrite (6.2) as a system of first-order differential
equations

dx

dt
= y,

dy

dt
= −ω2(t)x +

c

x3
, (6.3)

which has an associated t-dependent vector field X = X3 + ω2(t)X1, where

X1 = −x
∂

∂y
, X2 =

1

2

(
y
∂

∂y
− x

∂

∂x

)
, X3 = y

∂

∂x
+

c

x3
∂

∂y
, (6.4)

span a Lie algebra V MP of vector fields isomorphic to sl(2) with commutation relations given
by (5.5). It has been proven in [13] that the Milne–Pinney equations (6.3) comprise the three
different types of sl(2)-LH systems according to the value of the constant c as follows.

Proposition 6.1. The system (6.3) is a LH system of class P2 for c > 0; I4 for c < 0; and I5
for c = 0.

Since V MP spans a distribution of rank two on the plane and it is isomorphic to sl(2),
it must be diffeomorphic to P2, I4 or I5. We can therefore recover, straightforwardly, the
above proposition as a particular case of theorem 4.4. Since the vector fields (6.4) satisfy the
commutation relations (5.5), we obtain that (4.1) reads

R = −1

4

[
xy(∂x ⊗ ∂y + ∂y ⊗ ∂x) + x2∂x ⊗ ∂x +

(
y2 +

4c

x2

)
∂y ⊗ ∂y

]

and I(V MP) = c. Using this and theorem 4.4, we retrieve the same result given in previous
proposition. Therefore, like the Cayley–Klein Riccati equations (5.2), the Milne–Pinney ones
include the three possibilities of Vessiot–Guldberg Lie algebras isomorphic to sl(2) of Hamilto-
nian vector fields.
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6.3 Second-order Kummer–Schwarz equation

This is the second-order differential equation given by

d2x

dt2
=

3

2x

(
dx

dt

)2

− 2c x3 + 2η(t)x,

where c is a real constant and η(t) is an arbitrary t-dependent function. We define y := dx/dt
and we obtain a first-order system which has been studied in [23]

dx

dt
= y,

dy

dt
=

3

2

y2

x
− 2c x3 + 2η(t)x. (6.5)

This system has an associated t-dependent vector field X = X3 +η(t)X1, where the vector fields

X1 = 2x
∂

∂y
, X2 = x

∂

∂x
+ 2y

∂

∂y
, X3 = y

∂

∂x
+

(
3

2

y2

x
− 2c x3

)
∂

∂y
(6.6)

form a basis of a Lie algebra V KS isomorphic to sl(2) with commutation relations (5.5).

It can be proven that V KS comprises, once more, the three Vessiot–Guldberg Lie algebras
of Hamiltonian vector fields isomorphic to sl(2) given in table 1 according to the value of the
parameter c [13].

Proposition 6.2. The system (6.5) is a LH system of class P2 for c > 0; I4 for c < 0; and I5
for c = 0.

This statement was obtained in [13] by deriving the explicit diffeomorphisms from the Lie
algebra spanned by (6.6) to one of the Lie algebras given in table 1. In any case, we can
retrieve these results more easily by using theorem 4.4. Indeed, as the vector fields (6.6) span
a distribution of rank two, the theorem 4.4 applies. Moreover, these vector fields satisfy the
commutation relations (5.5) and we find that

R =
1

2
(X1 ⊗X3 +X3 ⊗X1)−X2 ⊗X2 =−x2∂x ⊗ ∂x−xy(∂x⊗ ∂y+∂y ⊗ ∂x)− (y2 + 4cx4)∂y ⊗ ∂y.

Hence, I(V KS) = c and, in view of theorem 4.4, we recover the results given in proposition 6.2.

6.4 Planar diffusion Riccati system

A diffusion equation can be transformed into a simpler PDE by solving a system of seven first-
order ordinary differential equations (see [24] and [25, p. 104] for details). This system can be
easily solved by integrating its projection onto R

2 given by

dx

dt
= −b(t) + 2c(t)x + 4a(t)x2 + a(t)c0y

4,
dy

dt
=
(
c(t) + 4a(t)x

)
y, (6.7)

where a(t), b(t) and c(t) are arbitrary t-dependent functions and c0 ∈ {0, 1}. We call this system
planar diffusion Riccati system, which is related to the t-dependent vector field

X = a(t)X3 − b(t)X1 + c(t)X2,

where

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = (4x2 + c0y

4)
∂

∂x
+ 4xy

∂

∂y
, (6.8)
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satisfy the commutation relations

[X1,X2] = 2X1, [X1,X3] = 4X2, [X2,X3] = 2X3. (6.9)

Consequently, they span a Vessiot–Guldberg Lie algebra V PDR isomorphic to sl(2). Let us use
again theorem 4.4 to determine to which one of the Lie algebras of table 1 is V PDR diffeomorphic
to. As the vector fields (6.8) satisfy (6.9), the Casimir tensor field R (4.1) turns out to be

R = c0y
4∂x ⊗ ∂x − y2∂y ⊗ ∂y ⇒ I(V PDR) = −c0.

Since the vector fields X1,X2,X3 span a distribution of rank two, the theorem 4.4 applies. In
view of the latter, the system (6.7) for c0 = 1 is diffeomorphic to I4 and for c0 = 0 to I5. Indeed,
for c0 = 1 the change of variables

u := 2x + y2, v := 2x− y2, x = 1
2(u + v), y =

√
u− v

maps (6.8) into a basis of I4 whose elements are proportional to those ones given table 1 after
a relabeling of the variables. Writing the symplectic structure and the Hamiltonian functions
given in table 1 in the initial coordinate system {x, y}, we obtain

ω = −dx ∧ dy

y3
, h1 =

1

2y2
, h2 =

x

y2
, h3 = 2

x2

y2
− 1

2
y2,

which satisfy

{h1, h2}ω = −2h1, {h1, h3}ω = −4h2, {h2, h3}ω = −2h3.

For the case c0 = 0, we have that the vector fields (6.8) form a basis of I5 (see table 1). Hence,
their associated symplectic form and some corresponding Hamiltonian functions can easily be
obtained from table 1. The main result of this section can be summarized as follows.

Proposition 6.3. The planar diffusion Riccati system (6.7) is a LH system of class I4 for
c0 = 1; and I5 for c0 = 0.

6.5 Equivalence among planar sl(2)-LH systems

By taking into account the previous results, we are led to the following statement.

Theorem 6.4. The sl(2)-LH systems (5.2), (6.1), (6.3), (6.5) and (6.7) are equivalent through
local diffeomorphisms whenever they belong to the same class in table 1, that is,

• P2: Milne–Pinney and Kummer–Schwarz equations for c > 0 as well as complex Riccati
equations with t-dependent real coefficients.

• I4: Milne–Pinney and Kummer–Schwarz equations for c < 0, coupled Riccati equations,
split-complex Riccati equations and the planar diffusion Riccati system with c0 = 1. All of
them with t-dependent real coefficients.

• I5: Milne–Pinney and Kummer–Schwarz equations for c = 0 as well as dual-Study Riccati
equations, planar diffusion Riccati systems with c0 = 0 and the harmonic oscillator with
t-dependent frequency.
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Only within each class, these systems are locally diffeomorphic and, therefore, there exists a
local t-independent change of variables mapping one into another. For instance, there does not
exist any diffeomorphism on R

2 mapping the Milne–Pinney and Kummer–Schwarz equations
with c 6= 0 to the harmonic oscillator with a t-dependent frequency as the latter is a LH system
of class I5 and the previous ones do not. Our results also explain the existence of the known
diffeomorphism mapping Kummer–Schwarz equations to Milne–Pinney equations provided their
constant c shares the same sign [22].

7 Two-photon LH systems

Let us study two different LH systems that belong to the same class P5: systems related to
t-dependent quadratic Hamiltonians and second-order Riccati equations in Hamiltonian form.
As a consequence, we shall prove their equivalence through diffeomorphisms.

The elements of the basis {X1, . . . ,X5} of P5 written in table 1 satisfy the Lie brackets

[X1,X2] = 0, [X1,X3] = X1, [X1,X4] = 0, [X1,X5] = X2,

[X2,X3] = −X2, [X2,X4] = X1, [X2,X5] = 0, [X3,X4] = −2X4,

[X3,X5] = 2X5, [X4,X5] = −X3.

Hence, they span a Lie algebra isomorphic to sl(2) ⋉ R
2, where R

2 ≃ 〈X1,X2〉 and sl(2) ≃
〈X3,X4,X5〉. Observe that this Lie algebra satisfies the conditions given by theorem 3.6, hence
such vector fields are Hamiltonian relative to the Poisson bivector Λ = X1 ∧ X2 = ∂x ∧ ∂y
or, equivalently, the associated symplectic structure ω = dx ∧ dy. This retrieves in an alge-
braic/geometric manner the result obtained in [13].

The corresponding Hamiltonian functions for X1, . . . ,X5 must be enlarged with a central
generator h0 = 1 giving rise to the centrally extended Lie algebra sl(2) ⋉R2 which is, in fact,
isomorphic to the two-photon Lie algebra h6 = 〈h1, . . . , h5, h0〉 [30, 36]. That is why we shall
call these systems two-photon LH systems. The commutation relations of this Lie algebra read

{h1, h2}ω = h0, {h1, h3}ω = −h1, {h1, h4}ω = 0, {h1, h5}ω = −h2,

{h2, h3}ω = h2, {h2, h4}ω = −h1, {h2, h5}ω = 0, {h3, h4}ω = 2h4,

{h3, h5}ω = −2h5, {h4, h5}ω = h3, {h0, ·}ω = 0.

(7.1)

Notice that h6 ≃ sl(2) ⋉ h3, where h3 ≃ 〈h0, h1, h2〉 is the Heisenberg–Weyl Lie algebra and
sl(2) ≃ 〈h3, h4, h5〉. Since h4 ≃ 〈h0, h1, h2, h3〉 is the harmonic oscillator algebra (isomorphic to
the LH algebra iso(1, 1) of the class I8), we have the inclusions h3 ⊂ h4 ⊂ h6.

7.1 t-dependent quadratic Hamiltonians

We now study t-dependent quadratic Hamiltonians

h(t, q, p) = α(t)
p2

2
+ β(t)

pq

2
+ γ(t)

q2

2
+ δ(t)p + ǫ(t)q + φ(t), (7.2)

where α(t), β(t), γ(t), δ(t), ǫ(t), φ(t) are arbitrary real t-dependent functions [26]. As particular
cases, (7.2) describes certain damped and/or dissipative harmonic oscillators [27], electric charges
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in monochromatic electric fields [26], etc. The corresponding Hamilton equations read

dq

dt
=

∂h

∂p
= α(t) p + β(t)

q

2
+ δ(t),

dp

dt
= −∂h

∂q
= −

(
β(t)

p

2
+ γ(t)q + ǫ(t)

)
. (7.3)

This system has an associated t-dependent vector field

X = δ(t)X1 − ǫ(t)X2 +
β(t)

2
X3 + α(t)X4 − γ(t)X5,

where X1, . . . ,X5 are, up to a trivial change of variables x := q and y := p, the vector fields
of the basis of P5 given in table 1. Hence, their Hamiltonian functions with respect to the
symplectic structure ω = dq ∧ dp can easily be obtained from table 1.

7.2 Second-order Riccati equation

Second-order Riccati equations, which were recently studied using the theory of Lie systems
in [28], read

d2x

dt2
+
(
f0(t) + f1(t)x

)dx

dt
+ c0(t) + c1(t)x + c2(t)x

2 + c3(t)x3 = 0, (7.4)

with

f1(t) = 3
√

c3(t), f0(t) =
c2(t)√
c3(t)

− 1

2c3(t)

dc3(t)

dt
, c3(t) > 0,

where c0(t), c1(t), c2(t) are arbitrary t-dependent functions and c3(t) is a non-negative function.
This differential equation arises by reducing third-order linear differential equations through a
dilation symmetry and a t-reparametrization [29].

The key point is that a quite general family of second-order Riccati equations (7.4) admits
a t-dependent Hamiltonian (see [28, 29]) given by

h(t, x, p) = −2
√−p− p

(
a0(t) + a1(t)x + a2(t)x

2
)
, p < 0,

where a0(t), a1(t), a2(t) are certain functions related to the t-dependent coefficients of (7.4). The
corresponding Hamilton equations are

dx

dt
=

∂h

∂p
=

1√−p
− a0(t) − a1(t)x− a2(t)x2,

dp

dt
= −∂h

∂x
= p (a1(t) + 2a2(t)x) ,

(7.5)

and the associated t-dependent vector field has the expression

X = Y1 − a0(t)Y2 − a1(t)Y3 − a2(t)Y4,

where

Y1 =
1√−p

∂

∂x
, Y2 =

∂

∂x
, Y3 = x

∂

∂x
− p

∂

∂p
, Y4 = x2

∂

∂x
− 2xp

∂

∂p
. (7.6)
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Another vector field

Y5 =
x√−p

∂

∂x
+ 2

√−p
∂

∂p
(7.7)

is required in order to close a Lie algebra V SR, whose non-vanishing commutation relations read

[Y1, Y3] = 1
2Y1, [Y1, Y4] = Y5, [Y2, Y3] = Y2, [Y2, Y4] = 2Y3,

[Y2, Y5] = Y1, [Y3, Y4] = Y4, [Y3, Y5] = 1
2Y5.

Hence, V SR ≃ sl(2) ⋉R
2 where R

2 ≃ 〈Y1, Y5〉 and sl(2) ≃ 〈Y2, Y3, Y4〉.
Next, observe that I = 〈Y1, Y5〉 is an ideal of V SR such that I ∧ I 6= {0} and that it can be

proven that all elements of V SR act on I as traceless operators. Therefore, in view of theorem
3.6, this Lie algebra consists of Hamiltonian vector fields with respect to the Poisson bivector
Λ := 1

2Y1 ∧ Y5 = ∂x ∧ ∂p or, equivalently, to the symplectic structure ω = dx ∧ dp.

The Hamiltonian functions corresponding to the vector fields (7.6) and (7.7) turn out to be

h̃1 = −2
√
−p, h̃2 = p, h̃3 = xp, h̃4 = x2p, h̃5 = −2x

√
−p,

which span along with h̃0 = 1 a Lie algebra of functions isomorphic to the two-photon Lie
algebra h6 with non-vanishing Lie brackets given by

{h̃1, h̃3}ω = −1
2 h̃1, {h̃1, h̃4}ω = −h̃5, {h̃1, h̃5}ω = 2h̃0, {h̃2, h̃3}ω = −h̃2,

{h̃2, h̃4}ω = −2h̃3, {h̃2, h̃5}ω = −h̃1, {h̃3, h̃4}ω = −h̃4, {h̃3, h̃5}ω = −1
2 h̃5.

Indeed, it can be seen that the functions

ĥ1 = − 1√
2
h̃5, ĥ2 =

1√
2
h̃1, ĥ3 = −2h̃3, ĥ4 = −h̃4, ĥ5 = h̃2, ĥ0 = h̃0

close the same commutation relations that the basis of h6 given in (7.1). The main results of
this section are then summarized as follows.

Proposition 7.1. The Hamilton equations (7.3) and (7.5) for t-dependent quadratic Hamilto-
nians and second-order Riccati equations (7.4), respectively, determine LH systems of class P5

with LH algebras isomorphic to the two-photon one h6. Consequently all of these systems are
locally diffeomorphic.

8 Projective Schrödinger equations on CP1

Let us describe a new application of LH systems on the plane. Consider the Schrödinger equa-
tions on C

2 given by

i
d

dt

[
Ψ1

Ψ2

]
=

[
λ1(t) β(t)
β̄(t) λ2(t)

] [
Ψ1

Ψ2

]
, (8.1)

where λ1(t), λ2(t) are arbitrary t-dependent real functions, β(t) is an arbitrary t-dependent
complex function and we assume ~ = 1 for simplicity. Let us construct the projection of this t-
dependent Schrödinger equation onto the projective space C

2
×\C× ≃ CP

1, where C
× := C−{0}

and C
2
× = C

2\{(0, 0)}. Observe that (Ψ1,Ψ2), (Φ1,Φ2) ∈ C
2
× belong to the same equivalence

class of CP1, a so-called ray, if and only if Ψ1Φ2 − Φ1Ψ2 = 0. Hence, elements (Ψ1,Ψ2) ∈ U1 :=
C × C

× belonging to the same ray give rise to the same complex number Ψ1Ψ−1
2 ∈ C. Using

this, we can introduce a well-defined local coordinate system π1 : [(Ψ1,Ψ2)] ∈ U1 ⊂ CP
1 7→ z :=

20



Ψ1Ψ
−1
2 ∈ C ≃ R

2. Similarly, a second coordinate system can be defined on U2 := C
× × C. A

simple calculation shows that the projection of (8.1) under π1 becomes

i
dz

dt
= β(t) − β̄(t)z2 + (λ1(t) − λ2(t))z.

Writing z = x + iy and β(t) = βx(t) + iβy(t), we obtain

dx

dt
= −βx(t)2xy + βy(t)(x2 − y2 + 1) + (λ1(t) − λ2(t))y,

dy

dt
= βx(t)(x2 − y2 − 1) + βy(t)2xy − (λ1(t) − λ2(t))x.

(8.2)

This system of differential equations describes the integral curves of the t-dependent vector field
X = −βx(t)X3 + βy(t)X2 + (λ1(t) − λ2(t))X1, where

X1 = y
∂

∂x
− x

∂

∂y
, X2 = (1 + x2 − y2)

∂

∂x
+ 2xy

∂

∂y
, X3 = 2xy

∂

∂x
+ (1 + y2 − x2)

∂

∂y
.

These are exactly the vector fields appearing in the Lie algebra P3 of table 1. So, they span a
Lie algebra of vector fields isomorphic to so(3) ≃ su(2) and X1,X2,X3 are Hamiltonian with
respect to the symplectic form given in table 1, namely

ω =
dx ∧ dy

(1 + x2 + y2)2
.

As a consequence of our results and [13, Theorem 4.4], this is the only symplectic structure on
the projective space, up to a constant multiplicative factor, turning (8.2) into a LH system for
arbitrary complex function β(t), and real functions λ1(t) and λ2(t).

9 Planar h2-LH systems

We now focus on the Lie algebra I14A ≃ R ⋉ R
r with r = 1 of table 1, so with a basis of vector

fields X1 = ∂x, X2 = η1(x)∂y with η1(x) /∈ 〈1〉. If we require that these close a non-Abelian Lie
algebra and we choose, with no loss of generality, that [X1,X2] = X2, then η1(x) = ex up to an
irrelevant proportional non-zero constant, that is

X1 =
∂

∂x
, X2 = ex

∂

∂y
, [X1,X2] = X2, (9.1)

and we denote 〈X1,X2〉 := h2 ≃ R ⋉ R ≃ Ir=1
14A. This is a Vessiot–Guldberg Lie algebra of

Hamiltonian vector fields relative to the symplectic form ω = dx ∧ dy. Hence, we can choose

h1 = y, h2 = −ex, {h1, h2}ω = −h2. (9.2)

In the following, we show, as a new result, that h2 underlies the complex Bernoulli differ-
ential equations with t-dependent real coefficients and we relate this result with other known
ones concerning generalised Buchdahl equations and t-dependent Lotka–Volterra systems. It is
remarkable that Cayley–Klein Riccati equations (5.2) with a2(t) = 0 are h2-LH systems as well.
Finally, we prove that all of these systems belong to the same class Ir=1

14A ≃ h2.

21



9.1 Complex Bernoulli differential equation with t-dependent real coefficients

Let us restrict ourselves to studying the complex differential Bernoulli equation (1.3) of the form

dz

dt
= a1(t)z + a2(t)z

n, n /∈ {0, 1}, (9.3)

with a1(t), a2(t) being arbitrary real functions. It can proved that the planar nonautonomous
Bernoulli-like equations appearing in [52, p. 197] when solving equations in the Abel chains can
be mapped into a particular case of the above system by means of an appropriate diffeomorphism.

The equation (9.3) can be studied in terms of the t-dependent vector field X = a1(t)X0 +
a2(t)X2, where we recall that the vector fields X0 and X2 are given in (1.5) and satisfy

[X0,X2] = (n− 1)X2,

which is isomorphic to h2. In the GKO classification [12, 13] there is just one Lie algebra
isomorphic to h2 whose vector fields are not proportional at each point: I14A with r = 1. So,
〈X0,X2〉 is a Lie algebra of Hamiltonian vector fields in view of the results of table 1.

In order to study this system, we provide the change of variables

x := ln

∣∣∣∣
rn−1

sin[θ(n− 1)]

∣∣∣∣ , y := −cotg[θ(n− 1)]

n− 1

mapping the vector fields X̄1 = X0/(n − 1) and X2 into (9.1). The symplectic form and
Hamiltonian functions for X0 and X2 in the initial variables r, θ can be obtained from ω = dx∧dy
and (9.2) by inverting the above change of variables.

9.2 Generalized Buchdahl equations

The generalized Buchdahl equations, appearing in the study of relativistic fluids [31, 32] and
whose properties have been studied through a Lagrangian approach in [33], are the second-order
differential equations given by

d2x

dt2
= a(x)

(
dx

dt

)2

+ b(t)
dx

dt
,

for arbitrary functions a(x) and b(t). If we set y := dx/dt, we find the first-order system of
differential equations

dx

dt
= y,

dy

dt
= a(x)y2 + b(t)y, (9.4)

which is associated with the t-dependent vector field X = X2 + b(t)X1, where

X1 = y
∂

∂y
, X2 = y

∂

∂x
+ a(x)y2

∂

∂y
,

satisfy [X1,X2] = X2. These vector fields span a Lie algebra diffeomorphic to Ir=1
14A ≃ h2 and

(9.4) becomes a LH system. The corresponding symplectic form and Hamiltonian functions can
be found in [13].
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9.3 t-dependent Lotka–Volterra systems

Finally, consider the particular Lotka–Volterra systems [34, 35] given by

dx

dt
= ax− g(t)(x − ay)x,

dy

dt
= ay − g(t)(bx− y)y, a 6= 0, (9.5)

where g(t) determines the variation of the seasons, while a and b are constants describing the
interactions among the species. System (9.5) is associated with the t-dependent vector field
X = X1 + g(t)X2 where

X1 = ax
∂

∂x
+ ay

∂

∂y
, X2 = −(x− ay)x

∂

∂x
− (bx− y)y

∂

∂y
,

satisfy
[X1,X2] = aX2.

Hence, (9.5) is a Lie system. Moreover, it has been proven in [13] that, except for the case with
a = b = 1, this is also a LH system belonging to the family Ir=1

14A ≃ h2. The symplectic form and
the Hamiltonian functions for X1 and X2 can be found in [13].

Hence, we conclude this section with the following statement.

Proposition 9.1. The complex Bernoulli differential equation (9.3), the generalized Buchdahl
equations (9.4) and the t-dependent Lotka–Volterra systems (9.5) (with the exception of a = b =
1) are LH systems with a Vessiot–Guldberg Lie algebra diffeomorphic to Ir=1

14A ≃ h2 in table 1.
Thus all of these systems are locally diffeomorphic.

10 Constants of motion and superposition rules

As commented in the introduction, one of the most outstanding properties of LH systems is
that their superposition rules (which exist for any Lie system) can be obtained by applying the
coalgebra approach recently introduced in [19] in an easier way than by applying traditional
methods [2, 9]. Essentially, for any LH system, this procedure requires to endow the LH algebra
with a coalgebra structure which is provided by a trivial (non-deformed) coproduct map. Next,
t-independent constants of motion can be obtained from the mth-order coproduct of a non-trivial
Casimir invariant and the corresponding superposition rule can then be worked out by starting
from such constants of motion.

In this section we firstly provide the constants of motion for the LH algebras displayed
in table 1 and, secondly, we use them in the construction of superposition rules for planar LH
systems. In this respect, we recall that, to the best of our knowledge, this coalgebra approach has
only been applied in [19] to planar sl(2) and so(3)-LH systems obtaining their superposition rules.
Therefore, we shall restrict ourselves to studying the remaining LH systems here considered,
that is, LH systems of classes P1, P5 and Ir=1

14A (via the class I8). Hereafter, we shall omit most
technical details, which can be found in [19], and so we shall briefly summarize the necessary
essential tools so as to have a self-contained paper.

10.1 Constants of motion

Assuming the notation introduced in section 3, we consider a Lie algebra g spanned by the
generators {v1, . . . , vl} and its corresponding symmetric algebra S(g) understood as a Poisson
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algebra. Then S(g) can always be endowed with a Poisson coalgebra structure by introducing
the (non-deformed) coproduct map ∆ : S(g) → S(g) ⊗ S(g) defined by

∆(v) = v ⊗ 1 + 1 ⊗ v, ∀v ∈ g ⊂ S(g), (10.1)

which is a Poisson algebra homomorphism. The coproduct ∆ ≡ ∆(2) can be extended to a
third-order coproduct ∆(3) : S(g) → S(g)⊗ S(g)⊗ S(g) ≡ S(3)(g) by means of the coassociatity
condition [53], ∆(3) := (∆ ⊗ Id) ◦ ∆ = (Id ⊗ ∆) ◦ ∆, namely

∆(3)(v) = v ⊗ 1 ⊗ 1 + 1 ⊗ v ⊗ 1 + 1 ⊗ 1 ⊗ v, ∀v ∈ g ⊂ S(g).

And the mth-order coproduct map ∆(m) : S(g) → S(m)(g) can be defined, recursively, as

∆(m) := (

(m−2)−times︷ ︸︸ ︷
Id ⊗ . . .⊗ Id ⊗ ∆(2)) ◦ ∆(m−1), m ≥ 3,

which, clearly, is also a Poisson algebra homomorphism.

Let X be a LH system related to a LH algebra HΛ spanned by the linearly independent
Hamiltonian functions {h1, . . . , hl} and let D be the Poisson algebra morphism D : S(g) →
C∞(M) induced by extending to S(g) the injection ι : g →֒ HΛ ⊂ C∞(M), with φ(vi) = hi
for i = 1, . . . , l. By extension, we can construct a family of Poisson algebra morphisms D(m) :
S(m)(g) → C∞(M)(m) ⊂ C∞(Mm). If C is a polynomial Casimir of the Poisson algebra S(g),
say C = C(v1, . . . , vl), then D(C) is a constant of motion for X and the functions

F (k)(h1, . . . , hl) = D(k)
[
∆(k) (C(v1, . . . , vl))

]
, k = 2, . . . ,m, (10.2)

are t-independent constants of motion for the diagonal prolongation X̃ to the mth manifold
Mm, namely if X =

∑n
i=1X

i(x)∂/∂xi, then

X̃ =
m∑

a=1

n∑

i=1

Xi(x(a))
∂

∂xi(a)
,

where (x(1), . . . , x(m)) ∈ Mm (see [9] for details on diagonal prolongations). Observe also that

each F (k) can naturally be considered as a function of C∞(Mm) for every m ≥ k.

If all the F (k) are non-constant functions, then they form a set of (m − 1) functionally
independent functions in involution in C∞(Mm) (cf. theorem 26 in [19]). Furthermore, from the
functions F (k) other constants of motion can be obtained in the form

F
(k)
ij = Sij(F

(k)), 1 ≤ i < j ≤ k, k = 2, . . . ,m, (10.3)

where Sij is the permutation of variables x(i) ↔ x(j) on Mm. Indeed, since X̃ is invariant under

the permutations x(i) ↔ x(j), then the F
(k)
ij are also t-independent constants of motion for the

diagonal prolongations X̃ to Mm.

Let us now illustrate the previous procedure by considering a LH system X taking values in
P1 ≃ iso(2). Using the basis {X1,X2,X3} of P1 given in table 1, we have

[X1,X2] = 0, [X1,X3] = −X2, [X2,X3] = X1.

The corresponding LH algebra is isomorphic to iso(2) and it admits a basis {h1, h2, h3, h0} (see
table 1) satisfying commutation relations

{h1, h2}ω = h0, {h1, h3}ω = h2, {h2, h3}ω = −h1, {h0, ·}ω = 0, (10.4)
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with respect to the canonical symplectic structure ω = dx∧ dy. The symmetric Poisson algebra
S
(
iso(2)

)
of iso(2), where {v1, v2, v3, v0} is a basis of iso(2) fulfilling the commutation rules

(10.4), has a non-trivial Casimir invariant given by

C = v3v0 − 1
2(v21 + v22).

From it, we obtain a trivial constant of motion on the variables (x, y) ≡ (x1, y1):

F = D(C) = φ(v3)φ(v0) − 1
2

(
φ2(v1) + φ2(v2)

)

= h3(x1, y1)h0(x1, y1) − 1
2 [h21(x1, y1) + h22(x1, y1)] = 1

2(x21 + y21) × 1 − 1
2(y21 + x21) = 0.

Nevertheless, once the coalgebra structure is introduced in S
(
iso(2)

)
through the coproduct

(10.1), the functions (10.2) are no longer trivial ones and we find, for m = 3 (so k = 2, 3), that

F (2) = D(2)(∆(C)) = (h3(x1, y1) + h3(x2, y2)) (h0(x1, y1) + h0(x2, y2))

−1
2

[
((h1(x1, y1) + h1(x2, y2))

2 + (h2(x1, y1) + h2(x2, y2))
2
]

= 1
2

[
(x1 − x2)2 + (y1 − y2)

2
]
,

F (3) = D(3)(∆(C)) =
∑3

i=1 h3(xi, yi)
∑3

j=1 h0(xj , yj)

−1
2

[(∑3
i=1 h1(xi, yi)

)2
+
(∑3

i=1 h2(xi, yi)
)2]

= 1
2

∑3
1≤i<j

[
(xi − xj)

2 + (yi − yj)
2
]
.

For k = 2, the constants (10.3) read

F
(2)
12 = S12(F

(2)) ≡ F (2), F
(2)
13 = S13(F

(2)) = 1
2

[
(x3 − x2)

2 + (y3 − y2)
2
]
,

F
(2)
23 = S23(F

(2)) = 1
2

[
(x1 − x3)

2 + (y1 − y3)
2
]

(10.5)

so that F (3) = F
(2)
12 +F

(2)
13 +F

(2)
23 . Observe that F (2) and F (3) satisfy that ∂(F (2), F (3))/∂(x1,y1)) 6=

0. We can also choose two other functions among the set {F (2), F
(2)
13 , F

(2)
23 } satisfying this con-

dition. This will be important for deriving superposition rules for LH systems of class P1.

We display in table 2 the first non-trivial invariants F (k) for each of the LH algebras of table 1,
except for the trivial Abelian cases I1 ≃ R and I12 ≃ R

r+1. This is F (3) for the classes P5 and
I16, and F (2) for the remaining ones. Notice that we have expressed the corresponding Casimir
C in terms of hi, instead of vi, to facilitate the reading with respect to table 1. We remark that
the LH algebras of the classes I14A, I14B and I16 have no non-trivial invariant for r = 1 and that
for I14A and I14B a choice of the functions ηj(x) must be performed. We have worked out this
latter case with r = 2 and the specific functions ηj(x) indicated in table 2. In all the cases for

which F (2) is not a trivial constant, it is found that F (3) = F
(2)
12 + F

(2)
13 + F

(2)
23 + constant.

The results of table 2 are important due to the fact that allow us to construct a superposition
rule for X. More precisely, let X be a LH system on R

2 admitting a Vessiot–Guldberg Lie algebra
of Hamiltonian vector fields V with basis {X1, . . . ,Xl}. Then, a set I1, . . . , In ∈ C∞(Mm) of
functionally independent constants of motion for the diagonal prolongation X̃ on Mm, with
m0 := m − 1 being such that X̃1 ∧ . . . ∧ X̃l 6= 0 for the prolongations to Mm0 , enables us
to determine a superposition rule for X provided ∂(I1, . . . , In)/∂(x1(0), . . . , x

n
(0)) 6= 0 (see [9]

for details). Indeed, the latter condition ensures that x1(0), . . . , x
n
(0) can be expressed in terms

of n-constants k1, . . . , kn and the remaining variables in Mm by solving the equations I1 =
k1, . . . , In = kn. This leads to a superposition rule for X. For Lie systems, I1, . . . , In are usually
obtained by solving a system of PDEs, whereas they can be derived algebraically for planar LH
systems following table 2. Exemplifying this for several new superposition rules for LH systems
on the plane will be the aim of following subsections.
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Table 2: Constants of motion for LH algebras of table 1.

# LH algebra Casimir C and invariants F (k)

P1 iso(2) C = h3h0 − 1
2
(h2

1 + h2
2)

F = 0 F (2) = 1
2

[

(x1 − x2)
2 + (y1 − y2)

2
]

P2 sl(2) C = h1h3 − h2
2

F = 1 F (2) =
(x1 − x2)

2 + (y1 + y2)
2

y1y2

P3 so(3) ⊕ R C = 4h2
1 + h2

2 + h2
3 + 2h1h0

F = 0 F (2) = − (x1 − x2)
2 + (y1 − y2)

2

(1 + x2
1 + y2

1)(1 + x2
2 + y2

2)

P5 h6 ≃ sl(2)⋉ R2 C = 2
(

h2
1h5 − h2

2h4 − h1h2h3

)

− h0(h
2
3 + 4h4h5)

F = 0 F (2) = 0 F (3) = [x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]
2

I4 sl(2) C = h1h3 − h2
2

F = − 1
4

F (2) = − (x2 − y1)(x1 − y2)

(x1 − y1)(x2 − y2)

I5 sl(2) C = h1h3 − h2
2

F = 0 F (2) =
(x1 − x2)

2

(2y1y2)2

I8 iso(1, 1) C = h1h2 + h3h0

F = 0 F (2) = (x1 − x2)(y1 − y2)

Ir=2
14A R ⋉ R

2 C = h2h3 η1(x) = ex η2(x) = e−x

F = −1 F (2) = −2 [1 + cosh(x1 − x2)]

Ir=2
14B R ⋉ R2 C = h2

2 + 2h3h0 η2(x) = x

F = 0 F (2) = − (x1 − x2)
2

I16 h2 ⋉ Rr+1 C =
2h3

2 + 6h2h4h0 + 3h5h
2
0

3h2
0 (h

2
2 + 2h4h0)

3/2
r ≥ 2

F = indet F (2) = 0 F (3) =
(x1 + x2 − 2x3)(x1 + x3 − 2x2)(x2 + x3 − 2x1)

54
√
2(x1x2 + x1x3 + x2x3 − x2

1 − x2
2 − x2

3)
3/2

10.2 Superposition rules for LH systems of class P1 ≃ iso(2)

Consider a LH system X with a Vessiot–Guldberg Lie algebra P1. It can be proved that m0 = 2
in this case. Let us consider the three constants of motion (10.5) written as

F (2) = 1
2

[
(x1 − x2)

2 + (y1 − y2)
2
]

= 1
2k

2
1 ≥ 0,

F
(2)
23 = 1

2

[
(x1 − x3)

2 + (y1 − y3)
2
]

= 1
2k

2
2 ≥ 0,

F
(2)
13 = 1

2

[
(x3 − x2)

2 + (y3 − y2)
2
]

= 1
2k

2
3 > 0. (10.6)

We aim to express the general solution (x1(t), y1(t)) of our LH system in terms of two different
particular solutions (xi(t), yi(t)), with i = 2, 3. This is obtained by starting from the two first
equations (10.6). The resulting expressions can next be simplified by introducing the third
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Q2(x2, y2)
•

Q1(x1, y1)

Q3(x3, y3)

y3 − y2

•

x3 − x2

k1 k3

k2
•

•α1

α2

Figure 1: Geometrical description of the three constants of motion (10.6) as the sides of a triangle.

constant k3, giving rise to

x±1 (x2, y2, x3, y3, k1, k2, k3) = x2 +
k21 + k23 − k22

2k23
(x3 − x2) ∓ 2A

(y3 − y2)

k23
,

y±1 (x2, y2, x3, y3, k1, k2, k3) = y2 +
k21 + k23 − k22

2k23
(y3 − y2) ± 2A

(x3 − x2)

k23
, (10.7)

where A is a constant given in terms of k1, k2, k3 by

A =
1

4

√
2(k21k

2
2 + k21k

2
3 + k22k

2
3) − (k41 + k42 + k43). (10.8)

We can assume with no loss of generality that k1, k2, k3 ≥ 0. Since we assume (x2, y2) 6= (x3, y3),
we can set k3 > 0. Therefore, the equations (10.7) comprise two cases (according to the signs ±
and ∓), which are well defined when the radicand of A is non-negative, namely when ki ≤ kj +kl
for different i, j, l. Since k3 = k3(x2, y2, x3, y3), we can understand expressions (10.7) as a
superposition rule Ψ : (x2, y2, x3, y3,±k1, k2) ∈ U ⊂ R

4 × (R × Rk2≥0) 7→ (x±1 , y
±
1 ) ∈ R

2. This
enables us to express the general solution (x1(t), y1(t)) ≡ (x(t), y(t)) of X in terms of two
different particular solutions (x2(t), y2(t)) and (x3(t), y3(t)).

Alternatively, the constants of motion (10.6) and the derivation of the superposition rule
(10.7) admit a geometrical approach. If k1, k2, k3 are non-negative constants, these can be
understood as the lengths of the segments Q1Q2, Q1Q3 and Q2Q3 between the points Q1 :=
(x1, y1), Q2 := (x2, y2) and Q3 := (x3, y3) in R

2 as shown in figure 1. Hence, the area of the
triangle Q1Q2Q3 is just the constant A (10.8), that is, the Heron’s formula. From figure 1 we
obtain that

x±1 (x2, y2, x3, y3, k1, k2, k3) = x2 + k1 cos(α1 ± α2) = x2 + k1(cosα1 cosα2 ∓ sinα1 sinα2),

y±1 (x2, y2, x3, y3, k1, k2, k3) = y2 + k1 sin(α1 ± α2) = y2 + k1(sinα1 cosα2 ± cosα1 sinα2),

and by introducing the triangle relations

sinα2 =
2A

k1k3
, cosα2 =

k21 + k23 − k22
2k1k3

, sinα1 =
y3 − y2

k3
, cosα1 =

x3 − x2
k3

,

we directly recover the equations (10.7).

We remark that the result (10.7) can be applied to all LH systems of class P1. For instance,
this can further be used so as to obtain a superposition rule for the Bernoulli differential equations
(1.4) with aR1 (t) = 0, provided that a change of variables (x, y) → (r, θ) mapping its Vessiot–
Guldberg Lie algebra into P1 is given. Equivalently, we can repeat the above procedure for the
LH algebra of Bernoulli differential equations without deriving a diffeomorphism.

27



10.3 Superposition rules for LH systems of classes I8 ≃ iso(1, 1) and Ir=1
14A ≃ h2

The class Ir=1
14A ≃ R⋉R admits a LH algebra isomorphic to h2 spanned by the functions given in

table 1 with commutation relations (9.2). There does not exist a non-trivial Casimir for h2, so
precluding, in principle, the obtention of a superposition rule through the coalgebra approach.
Nevertheless, this problem can be circumvented by considering an inclusion of Ir=1

14A as a Lie
subalgebra of a Lie algebra of another class admitting a LH algebra with a non-trivial Casimir.

There are several classes containing Ir=1
14A, e.g., P2, I4, I5, I8, P5,. . . (cf. see table 2 in [13]).

Due to the simple form of the Casimir of the LH algebra iso(1, 1) of I8 and that superposition
rules for sl(2)-LH systems on the plane were already studied in [19], we shall construct a new
superposition rule for LH systems of class I8 ≃ iso(1, 1), obtaining as a byproduct the one
corresponding to LH ones of class Ir=1

14A.

The LH algebra iso(1, 1) has commutation relations

{h1, h2}ω = h0, {h1, h3}ω = −h1, {h2, h3}ω = h2, {h0, ·}ω = 0,

with respect to ω = dx ∧ dy in the basis {h1, h2, h3, h0} given in table 1. We have that m0 = 2
for a LH system X with Vessiot–Gulgdberg Lie algebra I8. If m = 3, then we obtain from table 2
three constants of motion for the diagonal prolongation X̃ to (R2)3 by applying (10.3):

F (2) = (x1 − x2)(y1 − y2) = k1,

F
(2)
23 = (x1 − x3)(y1 − y3) = k2,

F
(2)
13 = (x3 − x2)(y3 − y2) = k3.

Notice that F (3) = F
(2)
12 + F

(2)
13 + F

(2)
23 . In this case, F (2) = k1, F

(2)
23 = k2 can be understood as

the equations on R
2 of rectangular hyperbolas with centers (x2, y2), (x3, y3). Clearly, F (2) and

F
(2)
23 are functionally independent and allow us to express (x1, y1) in terms of (x2, y2, x3, y3) and

k1, k2. The introduction of k3 again simplifies the final result which reads

x1(x2, y2, x3, y3, k1, k2, k3) =
1

2
(x2 + x3) +

k2 − k1 ±B

2(y2 − y3)
,

y1(x2, y2, x3, y3, k1, k2, k3) =
1

2
(y2 + y3) +

k2 − k1 ∓B

2(x2 − x3)
, (10.9)

where

B =
√

k21 + k22 + k23 − 2(k1k2 + k1k3 + k2k3).

Consequently, if we recall that k3 = k3(x2, y2, x3, y3), we obtain that (10.9) leads to a superpo-
sition rule for LH systems with a Vessiot–Guldberg Lie algebra Ir=1

14A provided

k21 + k22 + k23 ≥ 2(k1k2 + k1k3 + k2k3).

Let us now recover the superposition rule for a LH system of class Ir=1
14A out of these results. It

is immediate that up to a trivial change of variables Ir=1
14A = 〈∂u, eu∂v〉. Then, the change of

variables
y = eu, x = ve−u,

maps the basis of Ir=1
14A into vector fields −X3 and X1 of I8 given in table 1. Hence, every LH

system of class Ir=1
14A can be considered as a LH system of class I8 and the above superposition

rule for I8 also applies, up to a change of variables, to LH systems of class Ir=1
14A. It is worth

noting that this can be applied to the specific systems of class Ir=1
14A studied in section 9.
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10.4 Superposition rules for two-photon LH systems

Finally, consider a LH system with a Vessiot–Guldberg Lie algebra P5. It can be proved that
the prolongations of any basis of P5 become linearly independent at a generic point for m0 = 3.
So we fix m = 4. The associated LH algebra h6 with the basis given in table 1 fulfills the
commutation relations (7.1). According to table 2, the constant of motion F (2) = 0. From F (3)

written in table 2 and by using (10.3) we obtain four constants of motion given by

F (3) = (x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))
2 = k21 ,

F
(3)
34 = (x1(y2 − y4) + x2(y4 − y1) + x4(y1 − y2))

2 = k22 ,

F
(3)
24 = (x1(y3 − y4) + x3(y4 − y1) + x4(y1 − y3))

2 = k23 ,

F
(3)
14 = (x2(y3 − y4) + x3(y4 − y2) + x4(y2 − y3))

2 = k24 ,

such that F (4) = F (3)+F
(3)
34 +F

(3)
24 +F

(3)
14 . The constants of motion F (3) and F (4) are functionally

independent functions, but also F (3) and F
(3)
34 which have a simpler form. Thus from the latter

and by taking positive square roots we find (x1, y1) written in terms of (x2, y2, x3, y3, x4, y4) and
the two constants k1 and k2. The result is rather simplified by introducing a third constant k4
coming from the positive square root of F

(3)
14 (the remaining constant k3 does not enter), yielding

x1(x2, y2, x3, y3, x4, y4, k1, k2, k4) =

(
1 +

k2 − k1
k4

)
x2 −

k2
k4

x3 +
k1
k4

x4,

y1(x2, y2, x3, y3, x4, y4, k1, k2, k4) =

(
1 +

k2 − k1
k4

)
y2 −

k2
k4

y3 +
k1
k4

y4,

which are well defined whenever k4 6= 0. The above expression gives rise to a superposition
rule for LH systems with a Vessiot–Guldberg Lie algebra P5 by considering k4 as a function
k3 = k3(x2, y2, x3, y3, x4, y4). Obviously, this result is also valid, up to an appropriate change
of variables, to any other Lie system of class P5. In particular, this result can be applied to
the two-photon LH systems described in section 7, e.g., to t-dependent dissipative harmonic
oscillators.

11 Concluding remarks

This work introduces the so-called Casimir tensor fields for certain finite-dimensional Lie algebras
of vector fields. This allowed us to easily classify Lie algebras of vector fields on R

2 isomorphic to
sl(2). In the future, we aim to extend our techniques to arbitrary finite-dimensional Lie algebras
of vector fields. We also hope to devise methods to construct and to classify general LH systems
in a systematic way.

We have presented new LH systems: different kinds of Bernoulli differential equations,
Cayley–Klein Riccati equations, planar diffusion Riccati systems, etc. We have related them
with some already known LH systems scattered in the literature. These results are summarized
in table 3 where, according to the local classification of planar LH systems displayed in table 1,
we present the specific LH systems which are locally diffeomorphic within each class. For the
sake of completeness, we also indicate LH systems that have not been studied here, but that
can be found in [13, 18, 19, 28, 54]. As a result, table 3 details all LH systems on the plane
with physical and mathematical applications appearing in the literature. Of course, the search
of new applications of LH systems on the plane is still an open problem.

29



Table 3: Specific LH systems on the plane according to their class given in table 1. All of these systems

have t-dependent real coefficients except for P1. The systems marked with ‘∗’ (Ir=2

14A
and Ir=2

14B
) have been

studied in [13], while the one marked with ‘†’ in P3 can be found in [19, 54].

# LH algebra LH systems

P1 iso(2) Complex Bernoulli equation ż = ia(t)z + b(t)zn for real a(t) and complex b(t)

P2 sl(2) Complex Riccati equation

Milne–Pinney and Kummer–Schwarz equations with c > 0

P3 so(3)⊕ R, so(3) Projective Schrödinger equations on CP
1

Planar system with trigonometric nonlinearities†

P5 h6 ≃ sl(2)⋉ R2 Dissipative/damped harmonic oscillators, particle under specific electric fields

Hamilton equations for quadratic Hamiltonians

Second-order Riccati equation in Hamiltonian form

I4 sl(2) Split-complex Riccati equation

Coupled Riccati equations

Milne–Pinney and Kummer–Schwarz equations with c < 0

Planar diffusion Riccati system for c0 = 1

I5 sl(2) Dual-Study Riccati equation

Milne–Pinney and Kummer–Schwarz equations with c = 0

Harmonic oscillator

Planar diffusion Riccati system for c0 = 0

Ir=1
14A h2 ≃ R ⋉ R Complex Bernoulli equation ż = a1(t)z + a2(t)z

n

Generalised Buchdahl equations

Lotka–Volterra systems

Ir=2
14A R ⋉ R

2 Quadratic polynomial systems ẋ = bx+ c(t)y + f(t)y2, ẏ = y with b /∈ {1, 2}∗

Ir=2
14B R ⋉ R2 Quadratic polynomial systems ẋ = bx+ c(t)y + f(t)y2, ẏ = y with b ∈ {1, 2}∗

A primitive model of viral infection∗

Furthermore, we have derived t-independent constants of motion for most of the planar LH
algebras by applying a coalgebra approach. This has been used to derive new superposition
rules in an algebraic manner. In this respect, we remark that this procedure makes use of
the non-deformed coproduct map (10.1). This fact naturally suggests us trying to extend such
an approach to quantum (Poisson) algebras by considering deformed coproducts and deformed
commutation rules. Thus the quantum deformation parameter q would enter in the ‘deformed’
(generalized) LH systems in such a manner that the initial systems would be recovered under
the non-deformed limit q → 1.

Observe that the Casimir function I16 is the only element of table 2 that is not an element
of S(h2 ⋉Rr+1). Therefore it cannot be straightforwardly employed through the theory of this
work. Although our methods can be generalized by using the approach given in [47] for this type
of Casimir elements, this approach does not provide any significant improvement for planar LH
systems and it will left for studying problems where non-polynomial Casimir functions will be
the rule rather than the exception.

Work on these lines is currently in progress.
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